Characteristics of taurine transport in cultured renal epithelial cell lines: asymmetric polarity of proximal and distal cell lines. 1992

D P Jones, and L A Miller, and A Budreau, and R W Chesney
Department of Pediatrics, University of Tennessee, Memphis College of Medicine.

Taurine transport was determined in two continuous, renal epithelial cell lines: LLC-PK1 derived from the proximal tubule of the pig, and the Madin-Darby canine kidney cell (MDCK) from the distal tubule of the dog. In LLC-PK1, taurine transport is maximal at the apical surface, whereas in MDCK cells, transport is greatest at the basolateral surface. Transport is highly dependent on both sodium and chloride in the external medium, and is specific for beta-amino acids. The apical and basolateral surfaces of both cell lines show an adaptive response to extracellular taurine concentration, but only the basolateral surface of the MDCK cell responds to hyperosomolality by increased taurine accumulation. Thus, differential control of the beta-amino acid transport system by substrate and external tonicity exists. The role of the beta-amino acid transport system may differ according to the origin of the cell: in the proximal renal tubular cell, net transepithelial reabsorption of filtered taurine increases the body pool. By contrast, taurine accumulation by distal tubular cells may form a mechanism of cell volume regulation in response to osmotic stress.

UI MeSH Term Description Entries
D007686 Kidney Tubules, Distal The portion of renal tubule that begins from the enlarged segment of the ascending limb of the LOOP OF HENLE. It reenters the KIDNEY CORTEX and forms the convoluted segments of the distal tubule. Distal Kidney Tubule,Distal Renal Tubule,Distal Kidney Tubules,Distal Renal Tubules,Kidney Tubule, Distal,Renal Tubule, Distal,Renal Tubules, Distal,Tubule, Distal Kidney,Tubule, Distal Renal,Tubules, Distal Kidney,Tubules, Distal Renal
D007687 Kidney Tubules, Proximal The renal tubule portion that extends from the BOWMAN CAPSULE in the KIDNEY CORTEX into the KIDNEY MEDULLA. The proximal tubule consists of a convoluted proximal segment in the cortex, and a distal straight segment descending into the medulla where it forms the U-shaped LOOP OF HENLE. Proximal Kidney Tubule,Proximal Renal Tubule,Kidney Tubule, Proximal,Proximal Kidney Tubules,Proximal Renal Tubules,Renal Tubule, Proximal,Renal Tubules, Proximal,Tubule, Proximal Kidney,Tubule, Proximal Renal,Tubules, Proximal Kidney,Tubules, Proximal Renal
D009997 Osmotic Pressure The pressure required to prevent the passage of solvent through a semipermeable membrane that separates a pure solvent from a solution of the solvent and solute or that separates different concentrations of a solution. It is proportional to the osmolality of the solution. Osmotic Shock,Hypertonic Shock,Hypertonic Stress,Hypotonic Shock,Hypotonic Stress,Osmotic Stress,Hypertonic Shocks,Hypertonic Stresses,Hypotonic Shocks,Hypotonic Stresses,Osmotic Pressures,Osmotic Shocks,Osmotic Stresses,Pressure, Osmotic,Pressures, Osmotic,Shock, Hypertonic,Shock, Hypotonic,Shock, Osmotic,Shocks, Hypertonic,Shocks, Hypotonic,Shocks, Osmotic,Stress, Hypertonic,Stress, Hypotonic,Stress, Osmotic,Stresses, Hypertonic,Stresses, Hypotonic,Stresses, Osmotic
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D000042 Absorption The physical or physiological processes by which substances, tissue, cells, etc. take up or take in other substances or energy.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

D P Jones, and L A Miller, and A Budreau, and R W Chesney
January 1999, British journal of cancer,
D P Jones, and L A Miller, and A Budreau, and R W Chesney
January 1990, Methods in enzymology,
D P Jones, and L A Miller, and A Budreau, and R W Chesney
January 1996, Advances in experimental medicine and biology,
D P Jones, and L A Miller, and A Budreau, and R W Chesney
September 1985, The American journal of physiology,
D P Jones, and L A Miller, and A Budreau, and R W Chesney
October 1992, Current opinion in nephrology and hypertension,
D P Jones, and L A Miller, and A Budreau, and R W Chesney
January 1988, Progress in clinical and biological research,
D P Jones, and L A Miller, and A Budreau, and R W Chesney
January 1976, Current problems in clinical biochemistry,
D P Jones, and L A Miller, and A Budreau, and R W Chesney
September 2018, Journal of molecular biology,
D P Jones, and L A Miller, and A Budreau, and R W Chesney
February 1995, Biochemical Society transactions,
D P Jones, and L A Miller, and A Budreau, and R W Chesney
April 1988, Journal of cellular physiology,
Copied contents to your clipboard!