Beta-oxidation of 18:3n-3 in Atlantic salmon (Salmo salar L.) hepatocytes treated with different fatty acids. 2004

Bente E Torstensen, and Ingunn Stubhaug
National Institute of Nutrition and Seafood Research (NIFES), 5804 Bergen, Norway. bente.torstensen@nifes.no

To study whether Atlantic salmon beta-oxidation was affected by dietary FA composition, an in vitro study with primary hepatocytes was undertaken. Isolated hepatocyte cultures were stimulated with either 16:0, 18:1n-9, 18:2n-6, 18:3n-3, 20:5n-3, or 22:6n-3 in triplicate for 24 h. In addition, a control was included where no FA stimulation was performed, also in triplicate. After stimulation, radiolabeled [1-14C] 18:3n-3 was added and the cells were incubated for 2 h at 20 degrees C. The cells were then harvested, and radioactivity was determined in the acid-soluble part of the cells and medium, i.e., the end products of the beta-oxidation pathway. Specific beta-oxidation activity was significantly higher in hepatocytes stimulated with 18:3n-3. Further, when taking into account the amount of radiolabeled [1-14C]18:3n-3 taken up by the cells--the relative amount of beta-oxidized [1-14C]18:3n-3 of the total FA taken up by the hepatocytes-no significant differences were found. Thus, the regulation of beta-oxidation activity in the primary Atlantic salmon hepatocytes seems to be at the level of FA uptake and transport into the cell. This in vitro study shows that the catabolism processes in salmon hepatocytes are affected by the FA available and probably already regulated at the level of FA uptake.

UI MeSH Term Description Entries
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D002250 Carbon Radioisotopes Unstable isotopes of carbon that decay or disintegrate emitting radiation. C atoms with atomic weights 10, 11, and 14-16 are radioactive carbon isotopes. Radioisotopes, Carbon
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004042 Dietary Fats, Unsaturated Unsaturated fats or oils used in foods or as a food. Dietary Oils,Unsaturated Dietary Fats,Dietary Fat, Unsaturated,Dietary Oil,Fat, Unsaturated Dietary,Fats, Unsaturated Dietary,Oil, Dietary,Oils, Dietary,Unsaturated Dietary Fat
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012474 Salmon Fish of the genera ONCORHYNCHUS and Salmo in the family SALMONIDAE. They are anadromous game fish, frequenting the coastal waters of both the North Atlantic and Pacific. They are known for their gameness as a sport fish and for the quality of their flesh as a table fish. (Webster, 3d ed). Oncorhynchus gorbuscha,Oncorhynchus nerka,Oncorhynchus tshawytscha,Salmo salmo,Salmon, Chinook,Salmon, Pink,Salmon, Sockeye,Chinook Salmon,Pink Salmon,Sockeye Salmon
D015525 Fatty Acids, Omega-3 A group of unsaturated fatty acids occurring mainly in fish oils, with three double bonds at particular positions in the hydrocarbon chain. N-3 Fatty Acid,Omega-3 Fatty Acid,Omega-3 Fatty Acids,n-3 Fatty Acids,n-3 Oil,n3 Oil,Omega 3 Fatty Acids,n-3 Oils,n-3 PUFA,n-3 Polyunsaturated Fatty Acid,n3 Fatty Acid,n3 Oils,n3 PUFA,n3 Polyunsaturated Fatty Acid,Acid, N-3 Fatty,Acid, Omega-3 Fatty,Fatty Acid, N-3,Fatty Acid, Omega-3,Fatty Acid, n3,N 3 Fatty Acid,Oil, n-3,Oil, n3,Omega 3 Fatty Acid,PUFA, n-3,PUFA, n3,n 3 Fatty Acids,n 3 Oil,n 3 Oils,n 3 PUFA,n 3 Polyunsaturated Fatty Acid
D017962 alpha-Linolenic Acid A fatty acid that is found in plants and involved in the formation of prostaglandins. Linolenic Acid,Linolenate,alpha-Linolenic Acid, (E,E,E)-Isomer,alpha-Linolenic Acid, (E,E,Z)-Isomer,alpha-Linolenic Acid, (E,Z,E)-Isomer,alpha-Linolenic Acid, (E,Z,Z)-Isomer,alpha-Linolenic Acid, (Z,E,E)-Isomer,alpha-Linolenic Acid, (Z,E,Z)-Isomer,alpha-Linolenic Acid, (Z,Z,E)-Isomer,alpha-Linolenic Acid, Ammonium Salt,alpha-Linolenic Acid, Calcium Salt,alpha-Linolenic Acid, Lithium Salt,alpha-Linolenic Acid, Magnesium Salt,alpha-Linolenic Acid, Potassium Salt,alpha-Linolenic Acid, Sodium Salt,alpha-Linolenic Acid, Tin(2+) Salt,alpha-Linolenic Acid, Zinc Salt,alpha Linolenic Acid,alpha Linolenic Acid, Ammonium Salt,alpha Linolenic Acid, Calcium Salt,alpha Linolenic Acid, Lithium Salt,alpha Linolenic Acid, Magnesium Salt,alpha Linolenic Acid, Potassium Salt,alpha Linolenic Acid, Sodium Salt,alpha Linolenic Acid, Zinc Salt
D022781 Hepatocytes The main structural component of the LIVER. They are specialized EPITHELIAL CELLS that are organized into interconnected plates called lobules. Hepatic Cells,Cell, Hepatic,Cells, Hepatic,Hepatic Cell,Hepatocyte

Related Publications

Bente E Torstensen, and Ingunn Stubhaug
January 2011, Neuro endocrinology letters,
Bente E Torstensen, and Ingunn Stubhaug
July 2008, Comparative biochemistry and physiology. Toxicology & pharmacology : CBP,
Bente E Torstensen, and Ingunn Stubhaug
October 2006, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology,
Bente E Torstensen, and Ingunn Stubhaug
October 2010, Journal of immunological methods,
Bente E Torstensen, and Ingunn Stubhaug
January 2015, Developmental and comparative immunology,
Bente E Torstensen, and Ingunn Stubhaug
January 2000, BioFactors (Oxford, England),
Bente E Torstensen, and Ingunn Stubhaug
July 2005, Journal of fish diseases,
Bente E Torstensen, and Ingunn Stubhaug
October 2014, Journal of fish diseases,
Bente E Torstensen, and Ingunn Stubhaug
October 2023, Journal of fish diseases,
Copied contents to your clipboard!