Interactions in the tumor-promoting activity of carbon tetrachloride, trichloroacetate, and dichloroacetate in the liver of male B6C3F1 mice. 2004

Richard J Bull, and Lyle B Sasser, and Xingye C Lei
Molecular Biosciences, Pacific Northwest National Laboratory, Richland, WA 99352, USA. rjbull@earthlink.net

Interactions between carcinogens in mixtures found in the environment have been a concern for several decades. In the present study, male B6C3F1 mice were used to study the responses to mixtures of dichloroacetate (DCA), trichloroacetate (TCA), and carbon tetrachloride (CT). TCA produces liver tumors in mice with the phenotypic characteristics common to peroxisome proliferators. DCA increases the growth of liver tumors with a phenotype that is distinct in several respects from those produced by TCA. These chemicals are effective as carcinogens at doses that do not produce cytotoxicity. Thus, they encourage clonal expansion of initiated cells through subtle, selective mechanisms. CT is well known for its ability to promote the growth of liver tumors through cytotoxicity that produces a generalized growth stimulus in the liver that is reflected in a reparative hyperplasia. Thus, CT is relatively non-specific in its promotion of initiated cells within the liver. The objective of this study was to determine how the differing modes of action of these chemicals might interact when given as mixed exposures. The hypothesis was that the effects of two selective promoters would not be more than additive. On the other hand, CT would be selective only to cells not sensitive to its effects as a cytotoxin. Thus, it was hypothesized that neither DCA nor TCA would add significantly to the effects produced by CT. Mice were initiated by vinyl carbamate (VC), and then promoted by DCA, TCA, CT, or the pair-wised combinations of the three compounds. The effect of each treatment or treatment combination on tumor number per animal and mean tumor volume was assessed in each animal. Dose-related increases in mean tumor volume were observed with 20 and 50mg/kg CT, but each produced equal numbers of tumors at 36 weeks. As the dose of CT was increased to >/=100mg/kg substantial increases in the number of tumors per animal were observed, but the mean tumor size decreased. This finding suggests that initiation occurs as doses of CT increase to >/=100mg/kg, perhaps as a result of the inflammatory response that is known to occur with high doses of CT. When administered alone in the drinking water at 0.1, 0.5 and 2g/l, DCA increased both tumor number and tumor size in a dose-related manner. With TCA treatment at 2g/l in drinking water a maximum tumor number was reached by 24 weeks and was maintained until 36 weeks of treatment. DCA treatment did not produce a plateau in tumor number within the experimental period, but the numbers observed at the end of the experimental period were similar to TCA and doses of 50mg/kg CT. The tumor numbers observed at the end of the experiment are consistent with the assumption that the administered dose of the tumor initiator, vinyl carbamate, was the major determinant of tumor number and that treatments with CT, DCA, and TCA primarily affected tumor size. The results with mixtures of these compounds were consistent with the basic hypotheses that the responses to tumor promoters with differing mechanisms are limited to additivity at low effective doses. More complex, mutually inhibitory activity was more often observed between the three compounds. At 24 weeks, DCA produced a decrease in tumor numbers promoted by TCA, but the numbers were not different from TCA alone at 36 weeks. The reason for this result became apparent at 36 weeks of treatment where a dose-related decrease in the size of tumors promoted by TCA resulted from DCA co-administration. On the other hand, the low dose of TCA (0.1g/l) decreased the number of tumors produced by a high dose of DCA (2g/l), but higher doses of TCA (2g/l) produced the same number as observed with DCA alone. DCA inhibited the growth rate of CT-induced tumors (CT dose = 50mg/kg). TCA substantially increased the numbers of tumors observed at early time points when combined with CT, but this was not observed at 36 weeks. The lack of an effect at 36 weeks was attributable to the fact that more than 90% of the livers consisted of tumors and the earlier effect was masked by coalescence of tumors. Thus, the ability of TCA to significantly increase tumor numbers in CT-treated mice was probably real and contrary to our original hypothesis that CT was non-specific in its effects on initiated cells. It is probable that the interaction between CT and TCA is explained through stimulation of the growth of cells with differing phenotypes. These data suggest that the outcome of interactions between the mechanisms of tumor promotion vary based on the characteristics of the initiated cells. The interactions may result in additive or inhibitory effects, but no significant evidence of synergy was observed.

UI MeSH Term Description Entries
D008114 Liver Neoplasms, Experimental Experimentally induced tumors of the LIVER. Hepatoma, Experimental,Hepatoma, Morris,Hepatoma, Novikoff,Experimental Hepatoma,Experimental Hepatomas,Experimental Liver Neoplasms,Hepatomas, Experimental,Neoplasms, Experimental Liver,Experimental Liver Neoplasm,Liver Neoplasm, Experimental,Morris Hepatoma,Novikoff Hepatoma
D008297 Male Males
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D002251 Carbon Tetrachloride A solvent for oils, fats, lacquers, varnishes, rubber waxes, and resins, and a starting material in the manufacturing of organic compounds. Poisoning by inhalation, ingestion or skin absorption is possible and may be fatal. (Merck Index, 11th ed) Tetrachloromethane,Tetrachloride, Carbon
D002273 Carcinogens Substances that increase the risk of NEOPLASMS in humans or animals. Both genotoxic chemicals, which affect DNA directly, and nongenotoxic chemicals, which induce neoplasms by other mechanism, are included. Carcinogen,Oncogen,Oncogens,Tumor Initiator,Tumor Initiators,Tumor Promoter,Tumor Promoters,Initiator, Tumor,Initiators, Tumor,Promoter, Tumor,Promoters, Tumor
D003999 Dichloroacetic Acid A derivative of ACETIC ACID that contains two CHLORINE atoms attached to its methyl group. Sodium Dichloroacetate,Bichloroacetic Acid,Potassium Dichloroacetate,Acid, Bichloroacetic,Acid, Dichloroacetic,Dichloroacetate, Potassium,Dichloroacetate, Sodium
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004326 Drinking The consumption of liquids. Water Consumption,Water Intake,Drinkings
D004347 Drug Interactions The action of a drug that may affect the activity, metabolism, or toxicity of another drug. Drug Interaction,Interaction, Drug,Interactions, Drug
D000284 Administration, Oral The giving of drugs, chemicals, or other substances by mouth. Drug Administration, Oral,Administration, Oral Drug,Oral Administration,Oral Drug Administration,Administrations, Oral,Administrations, Oral Drug,Drug Administrations, Oral,Oral Administrations,Oral Drug Administrations

Related Publications

Richard J Bull, and Lyle B Sasser, and Xingye C Lei
September 1990, Toxicology,
Richard J Bull, and Lyle B Sasser, and Xingye C Lei
November 1993, Toxicology and applied pharmacology,
Richard J Bull, and Lyle B Sasser, and Xingye C Lei
September 1998, Toxicological sciences : an official journal of the Society of Toxicology,
Richard J Bull, and Lyle B Sasser, and Xingye C Lei
April 1990, Cancer letters,
Richard J Bull, and Lyle B Sasser, and Xingye C Lei
March 2004, Environmental toxicology and pharmacology,
Richard J Bull, and Lyle B Sasser, and Xingye C Lei
August 1992, Toxicology and applied pharmacology,
Richard J Bull, and Lyle B Sasser, and Xingye C Lei
October 1986, Fundamental and applied toxicology : official journal of the Society of Toxicology,
Richard J Bull, and Lyle B Sasser, and Xingye C Lei
May 2000, Environmental health perspectives,
Copied contents to your clipboard!