Metabolism and lipoperoxidative activity of trichloroacetate and dichloroacetate in rats and mice. 1992

J L Larson, and R J Bull
College of Pharmacy, Washington State University, Pullman 99164.

Trichloroacetate (TCA) and dichloroacetate (DCA) have been shown to be hepatocarcinogenic in mice when administered in drinking water. However, DCA produces pathological effects in the liver that are much more severe than those observed following TCA treatment in both rats and mice. To identify potential mechanisms involved in the liver pathology, the biotransformation of TCA and DCA was investigated in male Fischer 344 rats and B6C3F1 mice. Rodents were administered 5, 20, or 100 mg/kg [14C]TCA or [14C]DCA as a single oral dose in water. Elimination was examined by counting radioactivity in urine, feces, exhaled air, and carcass. Blood concentration over time curves were constructed for both TCA and DCA at the 20 and 100 mg/kg doses. Analysis of the data reveals two significant differences in the systemic clearance of TCA relative to DCA. First, DCA was much more extensively metabolized than TCA. More than 50% of any single dose of TCA was excreted unchanged in the urine of both rats and mice. In contrast, less than 2% of any dose of DCA was recovered in the urine as the parent compound. Second, while the blood concentration over time curves for TCA were similar in rats and mice, the blood concentrations of DCA were markedly greater in rats compared to those in mice, both when DCA was administered and when DCA resulted from metabolism of TCA. DCA was detected in the urine of TCA-treated animals and chloroacetate was found in the urine of DCA-treated animals. These metabolic products would be expected to arise from a free radical-generating, reductive dechlorination pathway. To evaluate the ability of acute doses of TCA and DCA to elicit a lipoperoxidative response, additional groups of mice were administered 0, 100, 300, 1000, and 2000 mg/kg TCA or DCA and thiobarbituric acid-reactive substances (TBARS) measured in liver homogenates. Both TCA and DCA enhanced the formation of TBARS in a dose-dependent manner, thereby providing further evidence of a reductive metabolic pathway. DCA was found to be the more potent of the chlorinated acetates in increasing TBARS formation in the livers of both rats and mice. In view of these data, it appears that the more extensive metabolism and rapid rate of elimination of DCA relative to TCA and the more potent lipoperoxidative activity of DCA may be important factors in the pathological effects associated with DCA treatment.

UI MeSH Term Description Entries
D008054 Lipid Peroxides Peroxides produced in the presence of a free radical by the oxidation of unsaturated fatty acids in the cell in the presence of molecular oxygen. The formation of lipid peroxides results in the destruction of the original lipid leading to the loss of integrity of the membranes. They therefore cause a variety of toxic effects in vivo and their formation is considered a pathological process in biological systems. Their formation can be inhibited by antioxidants, such as vitamin E, structural separation or low oxygen tension. Fatty Acid Hydroperoxide,Lipid Peroxide,Lipoperoxide,Fatty Acid Hydroperoxides,Lipid Hydroperoxide,Lipoperoxides,Acid Hydroperoxide, Fatty,Acid Hydroperoxides, Fatty,Hydroperoxide, Fatty Acid,Hydroperoxide, Lipid,Hydroperoxides, Fatty Acid,Peroxide, Lipid,Peroxides, Lipid
D008297 Male Males
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D011916 Rats, Inbred F344 An inbred strain of rat that is used for general BIOMEDICAL RESEARCH purposes. Fischer Rats,Rats, Inbred CDF,Rats, Inbred Fischer 344,Rats, F344,Rats, Inbred Fisher 344,CDF Rat, Inbred,CDF Rats, Inbred,F344 Rat,F344 Rat, Inbred,F344 Rats,F344 Rats, Inbred,Inbred CDF Rat,Inbred CDF Rats,Inbred F344 Rat,Inbred F344 Rats,Rat, F344,Rat, Inbred CDF,Rat, Inbred F344,Rats, Fischer
D002250 Carbon Radioisotopes Unstable isotopes of carbon that decay or disintegrate emitting radiation. C atoms with atomic weights 10, 11, and 14-16 are radioactive carbon isotopes. Radioisotopes, Carbon
D003999 Dichloroacetic Acid A derivative of ACETIC ACID that contains two CHLORINE atoms attached to its methyl group. Sodium Dichloroacetate,Bichloroacetic Acid,Potassium Dichloroacetate,Acid, Bichloroacetic,Acid, Dichloroacetic,Dichloroacetate, Potassium,Dichloroacetate, Sodium
D000284 Administration, Oral The giving of drugs, chemicals, or other substances by mouth. Drug Administration, Oral,Administration, Oral Drug,Oral Administration,Oral Drug Administration,Administrations, Oral,Administrations, Oral Drug,Drug Administrations, Oral,Oral Administrations,Oral Drug Administrations
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014238 Trichloroacetic Acid A strong acid used as a protein precipitant in clinical chemistry and also as a caustic for removing warts. Acide trichloracetique,Rubidium Trichloroacetate,Sodium Trichloroacetate,Acid, Trichloroacetic,Trichloroacetate, Rubidium,Trichloroacetate, Sodium,trichloracetique, Acide

Related Publications

J L Larson, and R J Bull
November 1993, Toxicology and applied pharmacology,
J L Larson, and R J Bull
October 1992, Fundamental and applied toxicology : official journal of the Society of Toxicology,
J L Larson, and R J Bull
July 2002, Toxicology and applied pharmacology,
J L Larson, and R J Bull
November 1997, Journal of toxicology and environmental health,
J L Larson, and R J Bull
September 1998, Toxicological sciences : an official journal of the Society of Toxicology,
J L Larson, and R J Bull
March 2012, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association,
Copied contents to your clipboard!