Na+/Ca2+ exchanger plays a key role in inducing apoptosis after hypoxia in cultured guinea pig ventricular myocytes. 2004

B N Eigel, and H Gursahani, and R W Hadley
Dept. of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, MS-371 UKMC, Lexington, KY 40536-0298, USA.

Altered Na(+)/Ca(2+) exchanger (NCX) protein expression or activity is thought to contribute to various aspects of cardiac pathology. In guinea pig ventricular myocytes, NCX-mediated Ca(2+) entry is almost entirely responsible for Ca(2+) overload during hypoxia-reoxygenation. Because Ca(2+) overload is a common initiator of apoptosis, the purpose of this study was to test the hypotheses that NCX activity is critically involved in initiating apoptosis after hypoxia-reoxygenation and that hypoxia-reoxygenation-induced apoptosis can be modulated by changes in NCX protein expression or activity. An NCX antisense oligonucleotide was used to reduce NCX protein expression in cultured adult guinea pig ventricular myocytes. Caspase-3 activation and cytochrome c release were used as markers of apoptosis. Hypoxia-reoxygenation-induced apoptosis was significantly decreased in antisense-treated myocytes compared with untreated control or nonsense-treated myocytes. Pretreatment of cultured myocytes for 24 h with either endothelin-1 or phenylephrine was found to increase both NCX protein expression and evoked NCX activity as well as enhance hypoxia-reoxygenation-induced apoptosis. Control experiments demonstrated that endothelin-1 and phenylephrine did not induce apoptosis on their own nor did they enhance the apoptotic response in a model of Ca(2+)-dependent, NCX-independent apoptosis. Additional control experiments demonstrated that the NCX antisense oligonucleotide did not alter the apoptotic response of myocytes to either H(2)O(2) or isoproterenol. Taken together, these data suggest that the NCX has a critical and specific role in the initiation of apoptosis after hypoxia-reoxygenation in guinea pig myocytes and that hypoxia-reoxygenation-induced apoptosis is quite sensitive to changes in NCX activity.

UI MeSH Term Description Entries
D007545 Isoproterenol Isopropyl analog of EPINEPHRINE; beta-sympathomimetic that acts on the heart, bronchi, skeletal muscle, alimentary tract, etc. It is used mainly as bronchodilator and heart stimulant. Isoprenaline,Isopropylarterenol,4-(1-Hydroxy-2-((1-methylethyl)amino)ethyl)-1,2-benzenediol,Euspiran,Isadrin,Isadrine,Isopropyl Noradrenaline,Isopropylnoradrenaline,Isopropylnorepinephrine,Isoproterenol Hydrochloride,Isoproterenol Sulfate,Isuprel,Izadrin,Norisodrine,Novodrin,Hydrochloride, Isoproterenol,Noradrenaline, Isopropyl,Sulfate, Isoproterenol
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D010656 Phenylephrine An alpha-1 adrenergic agonist used as a mydriatic, nasal decongestant, and cardiotonic agent. (R)-3-Hydroxy-alpha-((methylamino)methyl)benzenemethanol,Metaoxedrin,Metasympatol,Mezaton,Neo-Synephrine,Neosynephrine,Phenylephrine Hydrochloride,Phenylephrine Tannate,Neo Synephrine,Tannate, Phenylephrine
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005260 Female Females
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D006352 Heart Ventricles The lower right and left chambers of the heart. The right ventricle pumps venous BLOOD into the LUNGS and the left ventricle pumps oxygenated blood into the systemic arterial circulation. Cardiac Ventricle,Cardiac Ventricles,Heart Ventricle,Left Ventricle,Right Ventricle,Left Ventricles,Right Ventricles,Ventricle, Cardiac,Ventricle, Heart,Ventricle, Left,Ventricle, Right,Ventricles, Cardiac,Ventricles, Heart,Ventricles, Left,Ventricles, Right
D006861 Hydrogen Peroxide A strong oxidizing agent used in aqueous solution as a ripening agent, bleach, and topical anti-infective. It is relatively unstable and solutions deteriorate over time unless stabilized by the addition of acetanilide or similar organic materials. Hydrogen Peroxide (H2O2),Hydroperoxide,Oxydol,Perhydrol,Superoxol,Peroxide, Hydrogen
D000316 Adrenergic alpha-Agonists Drugs that selectively bind to and activate alpha adrenergic receptors. Adrenergic alpha-Receptor Agonists,alpha-Adrenergic Receptor Agonists,Adrenergic alpha-Agonist,Adrenergic alpha-Receptor Agonist,Receptor Agonists, Adrenergic alpha,Receptor Agonists, alpha-Adrenergic,alpha-Adrenergic Agonist,alpha-Adrenergic Agonists,alpha-Adrenergic Receptor Agonist,Adrenergic alpha Agonist,Adrenergic alpha Agonists,Adrenergic alpha Receptor Agonist,Adrenergic alpha Receptor Agonists,Agonist, Adrenergic alpha-Receptor,Agonist, alpha-Adrenergic,Agonist, alpha-Adrenergic Receptor,Agonists, Adrenergic alpha-Receptor,Agonists, alpha-Adrenergic,Agonists, alpha-Adrenergic Receptor,Receptor Agonist, alpha-Adrenergic,Receptor Agonists, alpha Adrenergic,alpha Adrenergic Agonist,alpha Adrenergic Agonists,alpha Adrenergic Receptor Agonist,alpha Adrenergic Receptor Agonists,alpha-Agonist, Adrenergic,alpha-Agonists, Adrenergic,alpha-Receptor Agonist, Adrenergic,alpha-Receptor Agonists, Adrenergic
D000318 Adrenergic beta-Agonists Drugs that selectively bind to and activate beta-adrenergic receptors. Adrenergic beta-Receptor Agonists,beta-Adrenergic Agonists,beta-Adrenergic Receptor Agonists,Adrenergic beta-Agonist,Adrenergic beta-Receptor Agonist,Betamimetics,Receptor Agonists, beta-Adrenergic,Receptors Agonists, Adrenergic beta,beta-Adrenergic Agonist,beta-Adrenergic Receptor Agonist,Adrenergic beta Agonist,Adrenergic beta Agonists,Adrenergic beta Receptor Agonist,Adrenergic beta Receptor Agonists,Agonist, Adrenergic beta-Receptor,Agonist, beta-Adrenergic,Agonist, beta-Adrenergic Receptor,Agonists, Adrenergic beta-Receptor,Agonists, beta-Adrenergic,Agonists, beta-Adrenergic Receptor,Receptor Agonist, beta-Adrenergic,Receptor Agonists, beta Adrenergic,beta Adrenergic Agonist,beta Adrenergic Agonists,beta Adrenergic Receptor Agonist,beta Adrenergic Receptor Agonists,beta-Agonist, Adrenergic,beta-Agonists, Adrenergic,beta-Receptor Agonist, Adrenergic,beta-Receptor Agonists, Adrenergic

Related Publications

B N Eigel, and H Gursahani, and R W Hadley
December 1993, The Journal of physiology,
B N Eigel, and H Gursahani, and R W Hadley
March 2007, Journal of pharmacological sciences,
B N Eigel, and H Gursahani, and R W Hadley
December 2003, The Japanese journal of physiology,
B N Eigel, and H Gursahani, and R W Hadley
March 2000, The Journal of physiology,
B N Eigel, and H Gursahani, and R W Hadley
July 2008, Journal of pharmacological sciences,
B N Eigel, and H Gursahani, and R W Hadley
February 1995, The Journal of physiology,
B N Eigel, and H Gursahani, and R W Hadley
July 1997, The American journal of physiology,
B N Eigel, and H Gursahani, and R W Hadley
November 2016, Naunyn-Schmiedeberg's archives of pharmacology,
B N Eigel, and H Gursahani, and R W Hadley
September 2002, Clinical and experimental pharmacology & physiology,
B N Eigel, and H Gursahani, and R W Hadley
November 2002, Annals of the New York Academy of Sciences,
Copied contents to your clipboard!