The role of the Na(+)-Ca2+ exchanger in the rate-dependent increase in contraction in guinea-pig ventricular myocytes. 1995

S M Harrison, and M R Boyett
Department of Physiology, University of Leeds, UK.

1. The intracellular sodium activity (alpha Na1), contraction and membrane current were recorded simultaneously in voltage-clamped guinea-pig ventricular myocytes. 2. Increasing the frequency (from 0.5 to 3 Hz) of voltage clamp pulses to 0 mV from a holding potential of -80 mV led to an increase in both alpha Na1 and contraction. The rate-dependent increase in contraction was reduced by 25 microM tetrodotoxin (TTX) and abolished with a holding potential of -40 mV. There was no rate-dependent rise in alpha Na1 with a holding potential of -40 mV. These results suggest an important role for alpha Na1 and in particular Na+ influx via Na+ channels during rate-dependent changes in contraction. 3. After an increase in frequency from 0.5 to 3 Hz, membrane current at the end of voltage clamp pulses became progressively more outward and the tail current upon at repolarization became progressively more inward compared with those recorded at 0.5 Hz. TTX reduced the magnitude of both the outward and inward rate-dependent shifts of current. 4. The addition of extracellular CsCl blocked the inward rectifier potassium current (IK.1) and the delayed rectifier (IK), but did not change the rate-dependent shift in current. 5. The difference between current-voltage relationships at 0.5 and 3 Hz showed that the rate-dependent outward shift of current at the end of voltage clamp pulses was small at potentials negative to -20 mV, was larger at more positive potentials and was reduced by TTX at most potentials. The TTX-sensitive component reversed at -47 mV. 6. These results are consistent with a net increase in outward Na(+)-Ca2+ exchange current during a voltage clamp pulse in response to the rise of alpha Na1. The increase in outward current (resulting from either enhanced Ca2+ influx or reduced Ca2+ efflux) will augment the Ca2+ load of the cell and contribute to the rate-dependent increase in contraction.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002586 Cesium A member of the alkali metals. It has an atomic symbol Cs, atomic number 55, and atomic weight 132.91. Cesium has many industrial applications, including the construction of atomic clocks based on its atomic vibrational frequency. Caesium,Caesium-133,Cesium-133,Caesium 133,Cesium 133
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D006339 Heart Rate The number of times the HEART VENTRICLES contract per unit of time, usually per minute. Cardiac Rate,Chronotropism, Cardiac,Heart Rate Control,Heartbeat,Pulse Rate,Cardiac Chronotropy,Cardiac Chronotropism,Cardiac Rates,Chronotropy, Cardiac,Control, Heart Rate,Heart Rates,Heartbeats,Pulse Rates,Rate Control, Heart,Rate, Cardiac,Rate, Heart,Rate, Pulse

Related Publications

S M Harrison, and M R Boyett
December 1993, The Journal of physiology,
S M Harrison, and M R Boyett
September 2002, Clinical and experimental pharmacology & physiology,
S M Harrison, and M R Boyett
December 2003, The Japanese journal of physiology,
S M Harrison, and M R Boyett
March 2007, Journal of pharmacological sciences,
S M Harrison, and M R Boyett
October 2004, American journal of physiology. Heart and circulatory physiology,
S M Harrison, and M R Boyett
November 2002, Annals of the New York Academy of Sciences,
S M Harrison, and M R Boyett
July 1997, The American journal of physiology,
S M Harrison, and M R Boyett
June 2003, Pflugers Archiv : European journal of physiology,
Copied contents to your clipboard!