The calcineurin activity and MCIP1.4 mRNA levels are increased by innervation in regenerating soleus muscle. 2004

Rita Fenyvesi, and Gábor Rácz, and Frank Wuytack, and Erno Zádor
Institute of Biochemistry, Faculty of Medicine, University of Szeged, P.O. Box 427, H-6701 Szeged, Hungary.

The level of active subunit of calcineurin and the calcineurin (Cn) enzyme activity are increased in innervated but not in denervated slow type regenerating skeletal soleus muscle. These nerve-dependent increases were not accompanied by similar increases in the mRNA levels. The changes in the mRNA level of the modulatory calcineurin interacting protein, MCIP1.4, reflected the calcineurin activity and did not increase in denervated regenerating muscles compared to the innervated regenerating controls. The increases in Cn activity and in MCIP1.4 mRNA levels occurred before the switch from fast to slow-type myosin heavy chain isoforms, a phenomenon similarly known to be dependent on innervation. This highlights the role of mediators, acting between the nerve and calcineurin, in the formation of slow fiber identity.

UI MeSH Term Description Entries
D008297 Male Males
D009124 Muscle Proteins The protein constituents of muscle, the major ones being ACTINS and MYOSINS. More than a dozen accessory proteins exist including TROPONIN; TROPOMYOSIN; and DYSTROPHIN. Muscle Protein,Protein, Muscle,Proteins, Muscle
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D012038 Regeneration The physiological renewal, repair, or replacement of tissue. Endogenous Regeneration,Regeneration, Endogenous,Regenerations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D015153 Blotting, Western Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes. Immunoblotting, Western,Western Blotting,Western Immunoblotting,Blot, Western,Immunoblot, Western,Western Blot,Western Immunoblot,Blots, Western,Blottings, Western,Immunoblots, Western,Immunoblottings, Western,Western Blots,Western Blottings,Western Immunoblots,Western Immunoblottings
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

Rita Fenyvesi, and Gábor Rácz, and Frank Wuytack, and Erno Zádor
October 2003, American journal of physiology. Cell physiology,
Rita Fenyvesi, and Gábor Rácz, and Frank Wuytack, and Erno Zádor
January 1997, European journal of applied physiology and occupational physiology,
Rita Fenyvesi, and Gábor Rácz, and Frank Wuytack, and Erno Zádor
July 2005, Journal of cellular physiology,
Rita Fenyvesi, and Gábor Rácz, and Frank Wuytack, and Erno Zádor
April 1975, Laboratory animals,
Rita Fenyvesi, and Gábor Rácz, and Frank Wuytack, and Erno Zádor
November 1996, The Biochemical journal,
Rita Fenyvesi, and Gábor Rácz, and Frank Wuytack, and Erno Zádor
July 1985, Experimental neurology,
Rita Fenyvesi, and Gábor Rácz, and Frank Wuytack, and Erno Zádor
June 2013, Molecular biotechnology,
Rita Fenyvesi, and Gábor Rácz, and Frank Wuytack, and Erno Zádor
February 2001, The Journal of nutrition,
Rita Fenyvesi, and Gábor Rácz, and Frank Wuytack, and Erno Zádor
July 2006, Journal of cellular physiology,
Copied contents to your clipboard!