Genomic organisation and nervous system expression of radial spoke protein 3. 2004

Irene Koukoulas, and Cheryl Augustine, and Nina Silkenbeumer, and Jenny M Gunnersen, and Hamish S Scott, and Seong-Seng Tan
Brain Development Laboratory, Howard Florey Institute, The University of Melbourne, Parkville 3010, Victoria, Australia.

Following their generation in the germinal zones, young neurons of the neocortex, hippocampus and cerebellum undergo long-distance migration to reach their final destinations. This locomotive activity depends on active deployment of cytoskeletal elements including the microtubule apparatus. In this study, we report the identification and expression of radial spoke protein 3 (RSP3), a member of a protein cluster responsible for anchoring and modifying dynein motor activity known to be crucial to microtubule sliding. The mouse RSP3 gene consists of eight exons and seven introns and spans over 230 kb. The genomic organisations of the human and rat RSP3 genes are similar although they span approximately 23 and 53 kb, respectively. This is in contrast to the Chlamydomonas RSP3 gene, where RSP3 was first isolated, which consists of four exons and three introns and spans approximately 2.7 kb. Despite these differences, the nucleotide and amino acid sequences upstream of, and throughout the RPII-binding domain of RSP3 are highly conserved between all the above-mentioned species. Mouse RSP3 mRNA was restricted to the developing neocortex, hippocampus and cerebellum during the stages when these structures are known to contain large numbers of migratory neurons. Gene expression studies suggest that RSP3 function is consistent with a locomotory role for this protein in migrating young neurons. In addition, expression of RSP3 mRNA in adult neurons point to additional, though still unknown functions. Our data provides the first evidence for the expression of radial spoke proteins in higher eukaryotes, and provides a biological framework for how these proteins may participate in microtubule sliding and neuronal migration in the embryonic brain.

UI MeSH Term Description Entries
D007438 Introns Sequences of DNA in the genes that are located between the EXONS. They are transcribed along with the exons but are removed from the primary gene transcript by RNA SPLICING to leave mature RNA. Some introns code for separate genes. Intervening Sequences,Sequences, Intervening,Intervening Sequence,Intron,Sequence, Intervening
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D009420 Nervous System The entire nerve apparatus, composed of a central part, the brain and spinal cord, and a peripheral part, the cranial and spinal nerves, autonomic ganglia, and plexuses. (Stedman, 26th ed) Nervous Systems,System, Nervous,Systems, Nervous
D010940 Plant Proteins Proteins found in plants (flowers, herbs, shrubs, trees, etc.). The concept does not include proteins found in vegetables for which PLANT PROTEINS, DIETARY is available. Plant Protein,Protein, Plant,Proteins, Plant
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002938 Ciona intestinalis Vase or tube shaped TUNICATES with a cosmopolitan distribution. Ciona robusta,Vase Tunicate,Yellow Sea Squirt,Sea Squirt, Yellow,Sea Squirts, Yellow,Vase Tunicates,Yellow Sea Squirts
D004622 Embryo, Mammalian The entity of a developing mammal (MAMMALS), generally from the cleavage of a ZYGOTE to the end of embryonic differentiation of basic structures. For the human embryo, this represents the first two months of intrauterine development preceding the stages of the FETUS. Embryonic Structures, Mammalian,Mammalian Embryo,Mammalian Embryo Structures,Mammalian Embryonic Structures,Embryo Structure, Mammalian,Embryo Structures, Mammalian,Embryonic Structure, Mammalian,Embryos, Mammalian,Mammalian Embryo Structure,Mammalian Embryonic Structure,Mammalian Embryos,Structure, Mammalian Embryo,Structure, Mammalian Embryonic,Structures, Mammalian Embryo,Structures, Mammalian Embryonic
D004625 Embryo, Nonmammalian The developmental entity of a fertilized egg (ZYGOTE) in animal species other than MAMMALS. For chickens, use CHICK EMBRYO. Embryonic Structures, Nonmammalian,Embryo, Non-Mammalian,Embryonic Structures, Non-Mammalian,Nonmammalian Embryo,Nonmammalian Embryo Structures,Nonmammalian Embryonic Structures,Embryo Structure, Nonmammalian,Embryo Structures, Nonmammalian,Embryo, Non Mammalian,Embryonic Structure, Non-Mammalian,Embryonic Structure, Nonmammalian,Embryonic Structures, Non Mammalian,Embryos, Non-Mammalian,Embryos, Nonmammalian,Non-Mammalian Embryo,Non-Mammalian Embryonic Structure,Non-Mammalian Embryonic Structures,Non-Mammalian Embryos,Nonmammalian Embryo Structure,Nonmammalian Embryonic Structure,Nonmammalian Embryos,Structure, Non-Mammalian Embryonic,Structure, Nonmammalian Embryo,Structure, Nonmammalian Embryonic,Structures, Non-Mammalian Embryonic,Structures, Nonmammalian Embryo,Structures, Nonmammalian Embryonic

Related Publications

Irene Koukoulas, and Cheryl Augustine, and Nina Silkenbeumer, and Jenny M Gunnersen, and Hamish S Scott, and Seong-Seng Tan
December 2014, Journal of molecular histology,
Irene Koukoulas, and Cheryl Augustine, and Nina Silkenbeumer, and Jenny M Gunnersen, and Hamish S Scott, and Seong-Seng Tan
March 2008, Cell motility and the cytoskeleton,
Irene Koukoulas, and Cheryl Augustine, and Nina Silkenbeumer, and Jenny M Gunnersen, and Hamish S Scott, and Seong-Seng Tan
October 1993, The Journal of cell biology,
Irene Koukoulas, and Cheryl Augustine, and Nina Silkenbeumer, and Jenny M Gunnersen, and Hamish S Scott, and Seong-Seng Tan
February 2005, Molecular biology of the cell,
Irene Koukoulas, and Cheryl Augustine, and Nina Silkenbeumer, and Jenny M Gunnersen, and Hamish S Scott, and Seong-Seng Tan
April 2001, The Journal of cell biology,
Irene Koukoulas, and Cheryl Augustine, and Nina Silkenbeumer, and Jenny M Gunnersen, and Hamish S Scott, and Seong-Seng Tan
October 2015, Histochemistry and cell biology,
Irene Koukoulas, and Cheryl Augustine, and Nina Silkenbeumer, and Jenny M Gunnersen, and Hamish S Scott, and Seong-Seng Tan
October 2009, The Journal of biological chemistry,
Irene Koukoulas, and Cheryl Augustine, and Nina Silkenbeumer, and Jenny M Gunnersen, and Hamish S Scott, and Seong-Seng Tan
January 2009, Methods in cell biology,
Irene Koukoulas, and Cheryl Augustine, and Nina Silkenbeumer, and Jenny M Gunnersen, and Hamish S Scott, and Seong-Seng Tan
July 1986, The Journal of cell biology,
Irene Koukoulas, and Cheryl Augustine, and Nina Silkenbeumer, and Jenny M Gunnersen, and Hamish S Scott, and Seong-Seng Tan
December 2010, Reproduction in domestic animals = Zuchthygiene,
Copied contents to your clipboard!