Projections from the amygdaloid complex to the piriform cortex: A PHA-L study in the rat. 2004

Katarzyna Majak, and Seppo Rönkkö, and Samuli Kemppainen, and Asla Pitkänen
Epilepsy Research Laboratory, A.I. Virtanen Institute for Molecular Sciences, University of Kuopio, FIN-70211 Kuopio, Finland.

Projections from the amygdala to the piriform cortex are proposed to provide a pathway via which the emotional system can modulate the processing of olfactory information as well as mediate the spread of seizure activity in epilepsy. To understand the details of the distribution and topography of these projections, we injected the anterograde tracer Phaseolus vulgaris-leucoagglutinin into different nuclear divisions of the amygdaloid complex in 101 rats and analyzed the distribution and density of projections in immunohistochemically processed preparations. The heaviest projections from the amygdala to the piriform cortex originated in the medial division of the lateral nucleus, the periamygdaloid and sulcal subfields of the periamygdaloid cortex, and the posterior cortical nucleus. The heaviest terminal labeling was observed in layers Ib and III of the medial aspect of the posterior piriform cortex. Lighter projections to the posterior piriform cortex originated in the dorsolateral division of the lateral nucleus, the magnocellular and parvicellular divisions of the basal and accessory basal nuclei, and the anterior cortical nucleus. The projections to the anterior piriform cortex were light and originated in the dorsolateral and medial divisions of the lateral nucleus, the magnocellular division of the basal and accessory basal nuclei, the anterior and posterior cortical nuclei, and the periamygdaloid subfield of the periamygdaloid cortex. The results indicate that only selective amygdaloid nuclei or their subdivisions project to the piriform cortex. In addition, substantial projections from several amygdaloid nuclei converge in the medial aspect of the posterior piriform cortex. Via these projections, the amygdaloid complex can modulate the processing of olfactory information in the piriform cortex. In pathologic conditions such as epilepsy, these connections might provide pathways for the spread of seizure activity from the amygdala to extra-amygdaloid regions.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009830 Olfactory Bulb Ovoid body resting on the CRIBRIFORM PLATE of the ethmoid bone where the OLFACTORY NERVE terminates. The olfactory bulb contains several types of nerve cells including the mitral cells, on whose DENDRITES the olfactory nerve synapses, forming the olfactory glomeruli. The accessory olfactory bulb, which receives the projection from the VOMERONASAL ORGAN via the vomeronasal nerve, is also included here. Accessory Olfactory Bulb,Olfactory Tract,Bulbus Olfactorius,Lateral Olfactory Tract,Main Olfactory Bulb,Olfactory Glomerulus,Accessory Olfactory Bulbs,Bulb, Accessory Olfactory,Bulb, Main Olfactory,Bulb, Olfactory,Bulbs, Accessory Olfactory,Bulbs, Main Olfactory,Bulbs, Olfactory,Glomerulus, Olfactory,Lateral Olfactory Tracts,Main Olfactory Bulbs,Olfactorius, Bulbus,Olfactory Bulb, Accessory,Olfactory Bulb, Main,Olfactory Bulbs,Olfactory Bulbs, Accessory,Olfactory Bulbs, Main,Olfactory Tract, Lateral,Olfactory Tracts,Olfactory Tracts, Lateral,Tract, Lateral Olfactory,Tract, Olfactory,Tracts, Lateral Olfactory,Tracts, Olfactory
D010835 Phytohemagglutinins Mucoproteins isolated from the kidney bean (Phaseolus vulgaris); some of them are mitogenic to lymphocytes, others agglutinate all or certain types of erythrocytes or lymphocytes. They are used mainly in the study of immune mechanisms and in cell culture. Kidney Bean Lectin,Kidney Bean Lectins,Lectins, Kidney Bean,Phaseolus vulgaris Lectin,Phaseolus vulgaris Lectins,Phytohemagglutinin,Hemagglutinins, Plant,Lectin, Kidney Bean,Lectin, Phaseolus vulgaris,Lectins, Phaseolus vulgaris,Plant Hemagglutinins
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D000679 Amygdala Almond-shaped group of basal nuclei anterior to the INFERIOR HORN OF THE LATERAL VENTRICLE of the TEMPORAL LOBE. The amygdala is part of the limbic system. Amygdaloid Body,Amygdaloid Nuclear Complex,Amygdaloid Nucleus,Archistriatum,Corpus Amygdaloideum,Intercalated Amygdaloid Nuclei,Massa Intercalata,Nucleus Amygdalae,Amygdalae, Nucleus,Amygdaloid Bodies,Amygdaloid Nuclear Complices,Amygdaloid Nuclei, Intercalated,Amygdaloid Nucleus, Intercalated,Amygdaloideum, Corpus,Amygdaloideums, Corpus,Archistriatums,Complex, Amygdaloid Nuclear,Complices, Amygdaloid Nuclear,Corpus Amygdaloideums,Intercalata, Massa,Intercalatas, Massa,Intercalated Amygdaloid Nucleus,Massa Intercalatas,Nuclear Complex, Amygdaloid,Nuclear Complices, Amygdaloid,Nuclei, Intercalated Amygdaloid,Nucleus, Amygdaloid,Nucleus, Intercalated Amygdaloid
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Katarzyna Majak, and Seppo Rönkkö, and Samuli Kemppainen, and Asla Pitkänen
April 2001, The Journal of comparative neurology,
Katarzyna Majak, and Seppo Rönkkö, and Samuli Kemppainen, and Asla Pitkänen
January 2003, Hippocampus,
Katarzyna Majak, and Seppo Rönkkö, and Samuli Kemppainen, and Asla Pitkänen
March 1993, The Journal of comparative neurology,
Katarzyna Majak, and Seppo Rönkkö, and Samuli Kemppainen, and Asla Pitkänen
April 1999, The Journal of comparative neurology,
Katarzyna Majak, and Seppo Rönkkö, and Samuli Kemppainen, and Asla Pitkänen
February 2001, The Journal of comparative neurology,
Katarzyna Majak, and Seppo Rönkkö, and Samuli Kemppainen, and Asla Pitkänen
April 1977, The Journal of comparative neurology,
Katarzyna Majak, and Seppo Rönkkö, and Samuli Kemppainen, and Asla Pitkänen
July 2005, The Journal of comparative neurology,
Katarzyna Majak, and Seppo Rönkkö, and Samuli Kemppainen, and Asla Pitkänen
January 2002, Neuroscience,
Katarzyna Majak, and Seppo Rönkkö, and Samuli Kemppainen, and Asla Pitkänen
January 1986, Advances in experimental medicine and biology,
Katarzyna Majak, and Seppo Rönkkö, and Samuli Kemppainen, and Asla Pitkänen
August 1990, The Journal of comparative neurology,
Copied contents to your clipboard!