Projections from the amygdaloid complex to the cerebral cortex and thalamus in the rat and cat. 1977

J E Krettek, and J L Price

Projections are described from the basolateral, lateral and anterior cortical nuclei of the amygdaloid complex, and from the prepiriform cortex, to several discrete areas of the cerebral cortex in the rat and cat and to the mediodorsal thalamic nucleus in the rat. These projections are very well-defined in their origin, and in their area of laminar pattern of termination. The basolateral amygdaloid nucleus can be divided into anterior and posterior divisions, based on cytoarchitectonic and connectional distinctions. In both the rat and cat the posterior division projects to the prelimbic area (area 32) and the infralimbic area (area 25) on the medical surface of the hemisphere. The anterior division projects more lightly to these areas, but also sends fibers to the dorsal and posterior agranular insular areas and the perirhinal area on the lateral surface. Furthermore, in the cat the perirhinal area is divided into two areas (areas 35 and 36) and the anterior division projects to both of these and also to a ventral part of the granular insular area; this last area is adjacent to, but separate from the auditory insular area and the second cortical taste area. In most of these areas, the fibers from the basolateral nucleus terminate predominantly in two bands: one in the deep part of layer I and layer II, and a heavier band in layer V (in the rat) or layers V and VI (in the cat). The lateral amygdaloid nucleus projects heavily to the perirhinal area, and also to the posterior agranular insular area. These fibers terminate predominantly in the middle layers of the cortex, although the cellular lamination in these two areas is relatively indistinct. The anterior cortical amygdaloid nucleus and the prepiriform cortex both project to the infralimbic area and the ventral agranular insular area, and the anterior cortical nucleus also projects to the posterior agranular area and the perirhinal area. In all of these areas, the fibers from these olfactory-related structures terminate in the middle of layer I. In the rat, the two divisions of the basolateral nucleus also project to the medial segment of the mediodorsal thalamic nucleus, with the anterior division projecting mainly to the posterior part of this segment and the posterior division to the anterior part. The endopiriform nucleus, deep to the prepiriform cortex, projects to the central segment of the mediodorsal nucleus; this may constitute the major olfactory input into the mediodorsal nucleus, since little or no projection could be demonstrated from the prepiriform cortex itself. Projections to the mediodorsal nucleus have not been found in the cat.

UI MeSH Term Description Entries
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D004525 Efferent Pathways Nerve structures through which impulses are conducted from a nerve center toward a peripheral site. Such impulses are conducted via efferent neurons (NEURONS, EFFERENT), such as MOTOR NEURONS, autonomic neurons, and hypophyseal neurons. Motor Pathways,Efferent Pathway,Pathway, Efferent,Pathways, Efferent
D005625 Frontal Lobe The part of the cerebral hemisphere anterior to the central sulcus, and anterior and superior to the lateral sulcus. Brodmann Area 8,Brodmann's Area 8,Frontal Cortex,Frontal Eye Fields,Lobus Frontalis,Supplementary Eye Field,Area 8, Brodmann,Area 8, Brodmann's,Brodmanns Area 8,Cortex, Frontal,Eye Field, Frontal,Eye Field, Supplementary,Eye Fields, Frontal,Frontal Cortices,Frontal Eye Field,Frontal Lobes,Lobe, Frontal,Supplementary Eye Fields
D000344 Afferent Pathways Nerve structures through which impulses are conducted from a peripheral part toward a nerve center. Afferent Pathway,Pathway, Afferent,Pathways, Afferent
D000679 Amygdala Almond-shaped group of basal nuclei anterior to the INFERIOR HORN OF THE LATERAL VENTRICLE of the TEMPORAL LOBE. The amygdala is part of the limbic system. Amygdaloid Body,Amygdaloid Nuclear Complex,Amygdaloid Nucleus,Archistriatum,Corpus Amygdaloideum,Intercalated Amygdaloid Nuclei,Massa Intercalata,Nucleus Amygdalae,Amygdalae, Nucleus,Amygdaloid Bodies,Amygdaloid Nuclear Complices,Amygdaloid Nuclei, Intercalated,Amygdaloid Nucleus, Intercalated,Amygdaloideum, Corpus,Amygdaloideums, Corpus,Archistriatums,Complex, Amygdaloid Nuclear,Complices, Amygdaloid Nuclear,Corpus Amygdaloideums,Intercalata, Massa,Intercalatas, Massa,Intercalated Amygdaloid Nucleus,Massa Intercalatas,Nuclear Complex, Amygdaloid,Nuclear Complices, Amygdaloid,Nuclei, Intercalated Amygdaloid,Nucleus, Amygdaloid,Nucleus, Intercalated Amygdaloid
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D013787 Thalamic Nuclei Several groups of nuclei in the thalamus that serve as the major relay centers for sensory impulses in the brain. Nuclei, Thalamic
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

J E Krettek, and J L Price
September 1979, The Journal of comparative neurology,
J E Krettek, and J L Price
April 1999, The Journal of comparative neurology,
J E Krettek, and J L Price
August 2004, The Journal of comparative neurology,
J E Krettek, and J L Price
January 1984, Acta neurobiologiae experimentalis,
J E Krettek, and J L Price
January 1983, Fiziologicheskii zhurnal,
J E Krettek, and J L Price
March 1989, Archives italiennes de biologie,
Copied contents to your clipboard!