The sequence and tissue expression of ovine renin. 1992

G P Aldred, and P Fu, and R J Crawford, and R T Fernley
Howard Florey Institute of Experimental Physiology and Medicine, Parkville, Victoria, Australia.

The primary structure of the sheep renin precursor has been determined from its cDNA sequence. A library of cDNA clones was constructed from adrenalectomized sheep kidney poly(A)+ RNA and screened for sheep renin sequences with a cloned mouse renin cDNA probe. Of the 300,000 clones generated, 24 were hybridization positive and the nucleotide sequences of two of the longest clones were determined. These clones coded for the mature sheep renin protein and the 3'-untranslated sequence but did not extend to the amino-terminal region of preprorenin. Clones corresponding to the 5' region of renin mRNA were generated by the polymerase chain reaction and their nucleotide sequences determined. The sheep renin precursor consists of 400 amino acids with a putative leader sequence of 14 amino acids and a putative 45 or 53 amino acid prosegment. The mature sheep renin protein has a 73% sequence identity with human renin. Northern analysis demonstrated the presence of renin mRNA in the kidney but not in other tissues in the sheep. While sodium depletion of sheep caused a rise in renin mRNA in the kidney, adrenalectomy also led to a large increase in renal renin mRNA. Southern analysis of genomic DNA suggests that there is only one gene coding for renin in the sheep.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D012083 Renin A highly specific (Leu-Leu) endopeptidase that generates ANGIOTENSIN I from its precursor ANGIOTENSINOGEN, leading to a cascade of reactions which elevate BLOOD PRESSURE and increase sodium retention by the kidney in the RENIN-ANGIOTENSIN SYSTEM. The enzyme was formerly listed as EC 3.4.99.19. Angiotensin-Forming Enzyme,Angiotensinogenase,Big Renin,Cryorenin,Inactive Renin,Pre-Prorenin,Preprorenin,Prorenin,Angiotensin Forming Enzyme,Pre Prorenin,Renin, Big,Renin, Inactive
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012756 Sheep Any of the ruminant mammals with curved horns in the genus Ovis, family Bovidae. They possess lachrymal grooves and interdigital glands, which are absent in GOATS. Ovis,Sheep, Dall,Dall Sheep,Ovis dalli

Related Publications

G P Aldred, and P Fu, and R J Crawford, and R T Fernley
February 1985, Journal of hypertension,
G P Aldred, and P Fu, and R J Crawford, and R T Fernley
June 1988, The Journal of biological chemistry,
G P Aldred, and P Fu, and R J Crawford, and R T Fernley
April 1997, Gene,
G P Aldred, and P Fu, and R J Crawford, and R T Fernley
April 1989, Journal of hypertension. Supplement : official journal of the International Society of Hypertension,
G P Aldred, and P Fu, and R J Crawford, and R T Fernley
March 1993, The American journal of physiology,
G P Aldred, and P Fu, and R J Crawford, and R T Fernley
July 1998, The American journal of physiology,
G P Aldred, and P Fu, and R J Crawford, and R T Fernley
February 2007, Molecular immunology,
G P Aldred, and P Fu, and R J Crawford, and R T Fernley
January 1984, Hypertension (Dallas, Tex. : 1979),
G P Aldred, and P Fu, and R J Crawford, and R T Fernley
June 1987, Hypertension (Dallas, Tex. : 1979),
G P Aldred, and P Fu, and R J Crawford, and R T Fernley
February 2002, Gene,
Copied contents to your clipboard!