Early computational processing in binocular vision and depth perception. 2005

Jenny Read
NIH, 49/2A50 Convent Drive, Bethesda, MD 20892-4435, USA.

Stereoscopic depth perception is a fascinating ability in its own right and also a useful model of perception. In recent years, considerable progress has been made in understanding the early cortical circuitry underlying this ability. Inputs from left and right eyes are first combined in primary visual cortex (V1), where many cells are tuned for binocular disparity. Although the observation of disparity tuning in V1, combined with psychophysical evidence that stereopsis must occur early in visual processing, led to initial suggestions that V1 was the neural correlate of stereoscopic depth perception, more recent work indicates that this must occur in higher visual areas. The firing of cells in V1 appears to depend relatively simply on the visual stimuli within local receptive fields in each retina, whereas the perception of depth reflects global properties of the stimulus. However, V1 neurons appear to be specialized in a number of respects to encode ecologically relevant binocular disparities. This suggests that they carry out essential pre-processing underlying stereoscopic depth perception in higher areas. This article reviews recent progress in developing accurate models of the computations carried out by these neurons. We seem close to achieving a mathematical description of the initial stages of the brain's stereo algorithm. This is important in itself--for instance, it may enable improved stereopsis in computer vision--and paves the way for a full understanding of how depth perception arises.

UI MeSH Term Description Entries
D008959 Models, Neurological Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic
D010364 Pattern Recognition, Visual Mental process to visually perceive a critical number of facts (the pattern), such as characters, shapes, displays, or designs. Recognition, Visual Pattern,Visual Pattern Recognition
D010775 Photic Stimulation Investigative technique commonly used during ELECTROENCEPHALOGRAPHY in which a series of bright light flashes or visual patterns are used to elicit brain activity. Stimulation, Photic,Visual Stimulation,Photic Stimulations,Stimulation, Visual,Stimulations, Photic,Stimulations, Visual,Visual Stimulations
D003867 Depth Perception Perception of three-dimensionality. Stereopsis,Stereoscopic Vision,Depth Perceptions,Perception, Depth,Perceptions, Depth,Stereopses,Stereoscopic Visions,Vision, Stereoscopic,Visions, Stereoscopic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014793 Visual Cortex Area of the OCCIPITAL LOBE concerned with the processing of visual information relayed via VISUAL PATHWAYS. Area V2,Area V3,Area V4,Area V5,Associative Visual Cortex,Brodmann Area 18,Brodmann Area 19,Brodmann's Area 18,Brodmann's Area 19,Cortical Area V2,Cortical Area V3,Cortical Area V4,Cortical Area V5,Secondary Visual Cortex,Visual Cortex Secondary,Visual Cortex V2,Visual Cortex V3,Visual Cortex V3, V4, V5,Visual Cortex V4,Visual Cortex V5,Visual Cortex, Associative,Visual Motion Area,Extrastriate Cortex,Area 18, Brodmann,Area 18, Brodmann's,Area 19, Brodmann,Area 19, Brodmann's,Area V2, Cortical,Area V3, Cortical,Area V4, Cortical,Area V5, Cortical,Area, Visual Motion,Associative Visual Cortices,Brodmanns Area 18,Brodmanns Area 19,Cortex Secondary, Visual,Cortex V2, Visual,Cortex V3, Visual,Cortex, Associative Visual,Cortex, Extrastriate,Cortex, Secondary Visual,Cortex, Visual,Cortical Area V3s,Extrastriate Cortices,Secondary Visual Cortices,V3, Cortical Area,V3, Visual Cortex,V4, Area,V4, Cortical Area,V5, Area,V5, Cortical Area,V5, Visual Cortex,Visual Cortex Secondaries,Visual Cortex, Secondary,Visual Motion Areas
D015348 Vision, Binocular The blending of separate images seen by each eye into one composite image. Binocular Vision

Related Publications

Jenny Read
January 1955, Acta ophthalmologica,
Jenny Read
January 1998, Medical informatics = Medecine et informatique,
Jenny Read
January 2008, Spatial vision,
Jenny Read
January 1983, Fortschritte der Ophthalmologie : Zeitschrift der Deutschen Ophthalmologischen Gesellschaft,
Jenny Read
January 1998, Studies in health technology and informatics,
Jenny Read
June 1980, Experimental neurology,
Copied contents to your clipboard!