Simultaneous characterization of efferent and afferent connectivity, neuroactive substances, and morphology of neurons. 1992

F G Wouterlood, and P H Goede, and M P Arts, and H J Groenewegen
Department of Anatomy and Embryology, Vrije University, Amsterdam, The Netherlands.

We present a method for establishing in a single experiment four characteristics of individual neurons: the efferent and afferent connectivity, the morphology, and the content of a particular neuroactive substance. The connectivity of the neurons is determined by retrograde fluorescent tracing with Fast Blue and anterograde tracing with the lectin Phaseolus vulgaris leucoagglutinin (PHA-L). After fixation, the brain is cut into 300-micron thick slices. Neurons containing retrogradely transported Fast Blue are intracellularly injected with the fluorescent dye Lucifer Yellow to fill their dendritic trees. The slices are then resectioned at 20-40 microns. One section through the soma of a Lucifer Yellow-filled neuron is selected for the detection of a neuroactive substance contained by this cell [immunofluorescence, secondary antiserum conjugated to tetramethylrhodamine (TRITC)]. Using appropriate filtering, it can be determined in the fluorescence microscope whether a Lucifer Yellow-containing cell body has also been labeled with TRITC, i.e., whether it is immunoreactive for this neuroactive substance. The adjacent sections are subjected to dual peroxidase immunocytochemistry with different chromogens to visualize the PHA-L-labeled afferent fibers (nickel-enhanced diaminobenzidine, blue-black reaction product) and to stabilize the Lucifer Yellow (diaminobenzidine, brown reaction product) in the dendrites of the intracellular injected cells. The other sections are used for electron microscopic visualization of the transported PHA-L. The relationships between the PHA-L-labeled afferent fibers (blue color) and the dendrites of the intracellularly Lucifer Yellow-injected, retrogradely Fast Blue-labeled cells (brown color) are studied by light microscopy. The electron microscope supplies ultrastructural data on the PHA-L-labeled axon terminals.

UI MeSH Term Description Entries
D007546 Isoquinolines A group of compounds with the heterocyclic ring structure of benzo(c)pyridine. The ring structure is characteristic of the group of opium alkaloids such as papaverine. (From Stedman, 25th ed)
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D009714 Nucleus Accumbens Collection of pleomorphic cells in the caudal part of the anterior horn of the LATERAL VENTRICLE, in the region of the OLFACTORY TUBERCLE, lying between the head of the CAUDATE NUCLEUS and the ANTERIOR PERFORATED SUBSTANCE. It is part of the so-called VENTRAL STRIATUM, a composite structure considered part of the BASAL GANGLIA. Accumbens Nucleus,Nucleus Accumbens Septi,Accumbens Septi, Nucleus,Accumbens Septus, Nucleus,Accumbens, Nucleus,Nucleus Accumbens Septus,Nucleus, Accumbens,Septi, Nucleus Accumbens,Septus, Nucleus Accumbens
D010835 Phytohemagglutinins Mucoproteins isolated from the kidney bean (Phaseolus vulgaris); some of them are mitogenic to lymphocytes, others agglutinate all or certain types of erythrocytes or lymphocytes. They are used mainly in the study of immune mechanisms and in cell culture. Kidney Bean Lectin,Kidney Bean Lectins,Lectins, Kidney Bean,Phaseolus vulgaris Lectin,Phaseolus vulgaris Lectins,Phytohemagglutinin,Hemagglutinins, Plant,Lectin, Kidney Bean,Lectin, Phaseolus vulgaris,Lectins, Phaseolus vulgaris,Plant Hemagglutinins
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D004525 Efferent Pathways Nerve structures through which impulses are conducted from a nerve center toward a peripheral site. Such impulses are conducted via efferent neurons (NEURONS, EFFERENT), such as MOTOR NEURONS, autonomic neurons, and hypophyseal neurons. Motor Pathways,Efferent Pathway,Pathway, Efferent,Pathways, Efferent
D005260 Female Females
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D006735 Horseradish Peroxidase An enzyme isolated from horseradish which is able to act as an antigen. It is frequently used as a histochemical tracer for light and electron microscopy. Its antigenicity has permitted its use as a combined antigen and marker in experimental immunology. Alpha-Peroxidase,Ferrihorseradish Peroxidase,Horseradish Peroxidase II,Horseradish Peroxidase III,Alpha Peroxidase,II, Horseradish Peroxidase,III, Horseradish Peroxidase,Peroxidase II, Horseradish,Peroxidase III, Horseradish,Peroxidase, Ferrihorseradish,Peroxidase, Horseradish
D000344 Afferent Pathways Nerve structures through which impulses are conducted from a peripheral part toward a nerve center. Afferent Pathway,Pathway, Afferent,Pathways, Afferent

Related Publications

F G Wouterlood, and P H Goede, and M P Arts, and H J Groenewegen
September 1995, Journal of the autonomic nervous system,
F G Wouterlood, and P H Goede, and M P Arts, and H J Groenewegen
April 2021, The Journal of comparative neurology,
F G Wouterlood, and P H Goede, and M P Arts, and H J Groenewegen
January 1968, Arkhiv anatomii, gistologii i embriologii,
F G Wouterlood, and P H Goede, and M P Arts, and H J Groenewegen
January 1980, Experimental brain research,
F G Wouterlood, and P H Goede, and M P Arts, and H J Groenewegen
January 1962, Progress in neurobiology,
F G Wouterlood, and P H Goede, and M P Arts, and H J Groenewegen
July 2020, VideoGIE : an official video journal of the American Society for Gastrointestinal Endoscopy,
F G Wouterlood, and P H Goede, and M P Arts, and H J Groenewegen
September 1998, Neuroscience,
F G Wouterlood, and P H Goede, and M P Arts, and H J Groenewegen
August 2004, Zhonghua er bi yan hou ke za zhi,
F G Wouterlood, and P H Goede, and M P Arts, and H J Groenewegen
June 1978, The Journal of comparative neurology,
F G Wouterlood, and P H Goede, and M P Arts, and H J Groenewegen
March 2000, The Journal of comparative neurology,
Copied contents to your clipboard!