Influence of spinal cord injury on the morphology of bladder afferent and efferent neurons. 1995

M N Kruse, and L A Bray, and W C de Groat
Department of Pharmacology, University of Pittsburgh, PA 15261, USA.

Severe micturition dysfunction can occur following spinal cord injury (SCI) due to abnormal contractions of the urethral sphincter during bladder contractions (bladder/sphincter dyssynergia). This causes urinary retention, bladder overdistension, and increases the workload of the bladder leading to hypertrophy of the bladder muscle. Bladder hypertrophy induced by urethral outlet ligation in rats is accompanied by enlargement of both the afferent and efferent neurons innervating the bladder. The primary aim of this study was to test whether SCI-induced bladder hypertrophy produces a similar enlargement of bladder afferent neurons in the dorsal root ganglia (DRG) or efferent neurons in the major pelvic ganglia (MPG). Following SCI in female Wistar rats, there was a four-fold increase in bladder weight. The mean cross-sectional area of bladder DRG cell profiles increased approx. 50% after SCI; however, the mean area of MPG cell profiles did not change significantly. Urinary diversion (disconnecting the ureters from the bladder) prevented both the bladder hypertrophy and the DRG cell hypertrophy after SCI, suggesting that bladder hypertrophy drives DRG cell enlargement. On the other hand, since the size of MPG cells did not change significantly after SCI, bladder hypertrophy does not mandate MPG cell enlargement. However, preliminary results indicate that the mean cross-sectional area of MPG cells did increase (2-3 times) in SCI rats when the neural input to the MPG was eliminated by transecting the pelvic and hypogastric nerves; this suggests that the lack of change in size of MPG cells after SCI may be due to an inhibitory influence from the spinal cord.

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D001743 Urinary Bladder A musculomembranous sac along the URINARY TRACT. URINE flows from the KIDNEYS into the bladder via the ureters (URETER), and is held there until URINATION. Bladder,Bladder Detrusor Muscle,Detrusor Urinae,Bladder Detrusor Muscles,Bladder, Urinary,Detrusor Muscle, Bladder,Detrusor Muscles, Bladder
D004525 Efferent Pathways Nerve structures through which impulses are conducted from a nerve center toward a peripheral site. Such impulses are conducted via efferent neurons (NEURONS, EFFERENT), such as MOTOR NEURONS, autonomic neurons, and hypophyseal neurons. Motor Pathways,Efferent Pathway,Pathway, Efferent,Pathways, Efferent
D005260 Female Females
D005727 Ganglia, Spinal Sensory ganglia located on the dorsal spinal roots within the vertebral column. The spinal ganglion cells are pseudounipolar. The single primary branch bifurcates sending a peripheral process to carry sensory information from the periphery and a central branch which relays that information to the spinal cord or brain. Dorsal Root Ganglia,Spinal Ganglia,Dorsal Root Ganglion,Ganglion, Spinal,Ganglia, Dorsal Root,Ganglion, Dorsal Root,Spinal Ganglion
D000344 Afferent Pathways Nerve structures through which impulses are conducted from a peripheral part toward a nerve center. Afferent Pathway,Pathway, Afferent,Pathways, Afferent
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013119 Spinal Cord Injuries Penetrating and non-penetrating injuries to the spinal cord resulting from traumatic external forces (e.g., WOUNDS, GUNSHOT; WHIPLASH INJURIES; etc.). Myelopathy, Traumatic,Injuries, Spinal Cord,Post-Traumatic Myelopathy,Spinal Cord Contusion,Spinal Cord Laceration,Spinal Cord Transection,Spinal Cord Trauma,Contusion, Spinal Cord,Contusions, Spinal Cord,Cord Contusion, Spinal,Cord Contusions, Spinal,Cord Injuries, Spinal,Cord Injury, Spinal,Cord Laceration, Spinal,Cord Lacerations, Spinal,Cord Transection, Spinal,Cord Transections, Spinal,Cord Trauma, Spinal,Cord Traumas, Spinal,Injury, Spinal Cord,Laceration, Spinal Cord,Lacerations, Spinal Cord,Myelopathies, Post-Traumatic,Myelopathies, Traumatic,Myelopathy, Post-Traumatic,Post Traumatic Myelopathy,Post-Traumatic Myelopathies,Spinal Cord Contusions,Spinal Cord Injury,Spinal Cord Lacerations,Spinal Cord Transections,Spinal Cord Traumas,Transection, Spinal Cord,Transections, Spinal Cord,Trauma, Spinal Cord,Traumas, Spinal Cord,Traumatic Myelopathies,Traumatic Myelopathy
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats
D048429 Cell Size The quantity of volume or surface area of CELLS. Cell Volume,Cell Sizes,Cell Volumes,Size, Cell,Sizes, Cell,Volume, Cell,Volumes, Cell

Related Publications

M N Kruse, and L A Bray, and W C de Groat
June 1978, The Journal of comparative neurology,
M N Kruse, and L A Bray, and W C de Groat
November 2015, The journal of spinal cord medicine,
M N Kruse, and L A Bray, and W C de Groat
January 1997, Developmental neuroscience,
M N Kruse, and L A Bray, and W C de Groat
December 2023, Journal of neuropathology and experimental neurology,
M N Kruse, and L A Bray, and W C de Groat
April 1999, Progress in neurobiology,
M N Kruse, and L A Bray, and W C de Groat
April 1992, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
Copied contents to your clipboard!