Solid-state nuclear magnetic resonance studies of HIV and influenza fusion peptide orientations in membrane bilayers using stacked glass plate samples. 2004

Christopher M Wasniewski, and Paul D Parkanzky, and Michele L Bodner, and David P Weliky
Department of Chemistry, Michigan State University, East Lansing, MI 48824-1322, USA.

The human immunodeficiency virus (HIV) and influenza virus fusion peptides are approximately 20-residue sequences which catalyze the fusion of viral and host cell membranes. The orientations of these peptides in lipid bilayers have been probed with 15N solid-state nuclear magnetic resonance (NMR) spectroscopy of samples containing membranes oriented between stacked glass plates. Each of the peptides adopts at least two distinct conformations in membranes (predominantly helical or beta strand) and the conformational distribution is determined in part by the membrane headgroup and cholesterol composition. In the helical conformation, the 15N spectra suggest that the influenza peptide adopts an orientation approximately parallel to the membrane surface while the HIV peptide adopts an orientation closer to the membrane bilayer normal. For the beta strand conformation, there appears to be a broader peptide orientational distribution. Overall, the data suggest that the solid-state NMR experiments can test models which correlate peptide orientation with their fusogenic function.

UI MeSH Term Description Entries
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D008560 Membrane Fluidity The motion of phospholipid molecules within the lipid bilayer, dependent on the classes of phospholipids present, their fatty acid composition and degree of unsaturation of the acyl chains, the cholesterol concentration, and temperature. Bilayer Fluidity,Bilayer Fluidities,Fluidities, Bilayer,Fluidities, Membrane,Fluidity, Bilayer,Fluidity, Membrane,Membrane Fluidities
D008561 Membrane Fusion The adherence and merging of cell membranes, intracellular membranes, or artificial membranes to each other or to viruses, parasites, or interstitial particles through a variety of chemical and physical processes. Fusion, Membrane,Fusions, Membrane,Membrane Fusions
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D006389 Hemagglutinins, Viral Specific hemagglutinin subtypes encoded by VIRUSES. Viral Hemagglutinin,Viral Hemagglutinins,Hemagglutinin, Viral
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D015700 HIV Envelope Protein gp41 Transmembrane envelope protein of the HUMAN IMMUNODEFICIENCY VIRUS which is encoded by the HIV env gene. It has a molecular weight of 41,000 and is glycosylated. The N-terminal part of gp41 is thought to be involved in CELL FUSION with the CD4 ANTIGENS of T4 LYMPHOCYTES, leading to syncytial formation. Gp41 is one of the most common HIV antigens detected by IMMUNOBLOTTING. Envelope Protein gp41, HIV,HIV Transmembrane Protein gp41,HTLV-III gp41,env Protein gp41, HIV,gp41(HIV),gp41 Envelope Protein, HIV

Related Publications

Christopher M Wasniewski, and Paul D Parkanzky, and Michele L Bodner, and David P Weliky
February 1986, Biochemistry,
Christopher M Wasniewski, and Paul D Parkanzky, and Michele L Bodner, and David P Weliky
January 1981, Methods in enzymology,
Christopher M Wasniewski, and Paul D Parkanzky, and Michele L Bodner, and David P Weliky
October 2003, Biochemistry,
Christopher M Wasniewski, and Paul D Parkanzky, and Michele L Bodner, and David P Weliky
July 2001, Biochemistry,
Christopher M Wasniewski, and Paul D Parkanzky, and Michele L Bodner, and David P Weliky
March 2010, The journal of physical chemistry. B,
Christopher M Wasniewski, and Paul D Parkanzky, and Michele L Bodner, and David P Weliky
June 2020, Solid state nuclear magnetic resonance,
Christopher M Wasniewski, and Paul D Parkanzky, and Michele L Bodner, and David P Weliky
January 2007, Methods in molecular biology (Clifton, N.J.),
Christopher M Wasniewski, and Paul D Parkanzky, and Michele L Bodner, and David P Weliky
January 1993, Methods in enzymology,
Christopher M Wasniewski, and Paul D Parkanzky, and Michele L Bodner, and David P Weliky
January 2012, Solid state nuclear magnetic resonance,
Christopher M Wasniewski, and Paul D Parkanzky, and Michele L Bodner, and David P Weliky
January 1989, Methods in enzymology,
Copied contents to your clipboard!