Water-protein interactions of an arginine-rich membrane peptide in lipid bilayers investigated by solid-state nuclear magnetic resonance spectroscopy. 2010

Shenhui Li, and Yongchao Su, and Wenbin Luo, and Mei Hong
Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.

The interaction of an arginine (Arg) residue with water in a transmembrane antimicrobial peptide, PG-1, is investigated by two-dimensional heteronuclear correlation (HETCOR), solid-state nuclear magnetic resonance (NMR) spectroscopy. Using (13)C and (15)N dipolar-edited (1)H-(15)N HETCOR experiments, we unambiguously assigned a water-guanidinium cross-peak that is distinct from intramolecular protein-protein cross-peaks. This water-Arg cross-peak was detected within a short (1)H spin diffusion mixing time of 1 ms, indicating that water is in close contact with the membrane-inserted guanidinium. Together with previously observed short guanidinium-phosphate distances, these solid-state NMR data suggest that the Arg side chains of PG-1 are stabilized by both hydration water and neutralizing lipid headgroups. The membrane deformation that occurs when water and lipid headgroups are pulled into the hydrophobic region of the bilayer is symptomatic of the membrane-disruptive function of this antimicrobial peptide. The water-Arg interactions observed here provide direct experimental evidence for molecular dynamics simulations of the solvation of Arg side chains of membrane proteins by deeply embedded water in lipid bilayers.

UI MeSH Term Description Entries
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D001120 Arginine An essential amino acid that is physiologically active in the L-form. Arginine Hydrochloride,Arginine, L-Isomer,DL-Arginine Acetate, Monohydrate,L-Arginine,Arginine, L Isomer,DL Arginine Acetate, Monohydrate,Hydrochloride, Arginine,L Arginine,L-Isomer Arginine,Monohydrate DL-Arginine Acetate
D014867 Water A clear, odorless, tasteless liquid that is essential for most animal and plant life and is an excellent solvent for many substances. The chemical formula is hydrogen oxide (H2O). (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Hydrogen Oxide
D057927 Hydrophobic and Hydrophilic Interactions The thermodynamic interaction between a substance and WATER. Hydrophilic Interactions,Hydrophilic and Hydrophobic Interactions,Hydrophilicity,Hydrophobic Interactions,Hydrophobicity,Hydrophilic Interaction,Hydrophilicities,Hydrophobic Interaction,Hydrophobicities,Interaction, Hydrophilic,Interaction, Hydrophobic,Interactions, Hydrophilic,Interactions, Hydrophobic
D019906 Nuclear Magnetic Resonance, Biomolecular NMR spectroscopy on small- to medium-size biological macromolecules. This is often used for structural investigation of proteins and nucleic acids, and often involves more than one isotope. Biomolecular Nuclear Magnetic Resonance,Heteronuclear Nuclear Magnetic Resonance,NMR Spectroscopy, Protein,NMR, Biomolecular,NMR, Heteronuclear,NMR, Multinuclear,Nuclear Magnetic Resonance, Heteronuclear,Protein NMR Spectroscopy,Biomolecular NMR,Heteronuclear NMR,Multinuclear NMR,NMR Spectroscopies, Protein,Protein NMR Spectroscopies,Spectroscopies, Protein NMR,Spectroscopy, Protein NMR

Related Publications

Shenhui Li, and Yongchao Su, and Wenbin Luo, and Mei Hong
January 1981, Methods in enzymology,
Shenhui Li, and Yongchao Su, and Wenbin Luo, and Mei Hong
February 1986, Biochemistry,
Shenhui Li, and Yongchao Su, and Wenbin Luo, and Mei Hong
November 2010, Biochemistry,
Shenhui Li, and Yongchao Su, and Wenbin Luo, and Mei Hong
January 2015, Methods in molecular biology (Clifton, N.J.),
Shenhui Li, and Yongchao Su, and Wenbin Luo, and Mei Hong
January 2012, PloS one,
Shenhui Li, and Yongchao Su, and Wenbin Luo, and Mei Hong
April 1992, Biophysical journal,
Shenhui Li, and Yongchao Su, and Wenbin Luo, and Mei Hong
August 1982, Journal of molecular biology,
Shenhui Li, and Yongchao Su, and Wenbin Luo, and Mei Hong
March 2012, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!