| D008024 |
Ligands |
A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) |
Ligand |
|
| D011964 |
Receptors, Gastrointestinal Hormone |
Cell surface proteins that bind gastrointestinal hormones with high affinity and trigger intracellular changes influencing the behavior of cells. Most gastrointestinal hormones also act as neurotransmitters so these receptors are also present in the central and peripheral nervous systems. |
Gastrointestinal Hormone Receptors,Intestinal Hormone Receptors,Receptors, Gastrointestinal Peptides,Gastrointestinal Hormone Receptor,Intestinal Hormone Receptor,Receptors, Gastrointestinal Hormones,Receptors, Intestinal Hormone,Gastrointestinal Hormones Receptors,Gastrointestinal Peptides Receptors,Hormone Receptor, Gastrointestinal,Hormone Receptor, Intestinal,Hormone Receptors, Gastrointestinal,Hormone Receptors, Intestinal,Hormones Receptors, Gastrointestinal,Peptides Receptors, Gastrointestinal,Receptor, Gastrointestinal Hormone,Receptor, Intestinal Hormone |
|
| D006162 |
Guanylate Cyclase |
An enzyme that catalyzes the conversion of GTP to 3',5'-cyclic GMP and pyrophosphate. It also acts on ITP and dGTP. (From Enzyme Nomenclature, 1992) EC 4.6.1.2. |
Guanyl Cyclase,Deoxyguanylate Cyclase,Guanylyl Cyclase,Inosinate Cyclase,Cyclase, Deoxyguanylate,Cyclase, Guanyl,Cyclase, Guanylate,Cyclase, Guanylyl,Cyclase, Inosinate |
|
| D006801 |
Humans |
Members of the species Homo sapiens. |
Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man |
|
| D000818 |
Animals |
Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. |
Animal,Metazoa,Animalia |
|
| D043562 |
Receptors, G-Protein-Coupled |
The largest family of cell surface receptors involved in SIGNAL TRANSDUCTION. They share a common structure and signal through HETEROTRIMERIC G-PROTEINS. |
G Protein Coupled Receptor,G-Protein-Coupled Receptor,G-Protein-Coupled Receptors,G Protein Coupled Receptors,Receptor, G-Protein-Coupled,Receptors, G Protein Coupled |
|
| D051379 |
Mice |
The common name for the genus Mus. |
Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus |
|
| D018345 |
Mice, Knockout |
Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes. |
Knockout Mice,Mice, Knock-out,Mouse, Knockout,Knock-out Mice,Knockout Mouse,Mice, Knock out |
|
| D036361 |
Peptide Hormones |
Hormones synthesized from amino acids. They are distinguished from INTERCELLULAR SIGNALING PEPTIDES AND PROTEINS in that their actions are systemic. |
Hormones, Peptide,Peptide Hormone,Polypeptide Hormone,Polypeptide Hormones,Hormone, Peptide,Hormone, Polypeptide,Hormones, Polypeptide |
|