Glycolysis regulates the induction of lactate utilization for synaptic potentials after hypoxia in the granule cell of guinea pig hippocampus. 2004

Toshihiro Takata, and Bo Yang, and Takashi Sakurai, and Yasuhiro Okada, and Koichi Yokono
Department of Internal and Geriatric Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan. takata-tky@umin.ac.jp

Lactate is considered an alternative substrate that is capable of replacing glucose in maintaining synaptic function in adult neurons. But, we found recently that lactate could be utilized for maintenance of synaptic potentials only after the activation of NMDA and voltage-dependent-calcium channel during glucose deprivation. To clarify more on the relationship between glycolysis and induction of lactate utilization, we tested lower concentration of glucose with hypoxia to induce a relative shortage of anaerobic energy production. Population spikes are not maintained with lactate following hypoxia in 10 mM glucose medium, but are maintained at their original levels with lactate after exposure to hypoxia in lower concentration (5 mM) of glucose. Hypothermia during low glucose-hypoxia, bath application of the NMDA channel blocker and the voltage-sensitive calcium channel blocker, as well as the omission of extracellular calcium prevented the induction of the lactate-supported population spikes. ATP levels in the tissue slices are relatively preserved in the conditions that block the induction of lactate-supported population spikes. From these observations, we propose that the energy source for maintenance of synaptic function in adult neuron changes from adult form (glucose alone) to immature one (glucose and/or lactate) after short of glucose supply.

UI MeSH Term Description Entries
D007003 Hypoglycemia A syndrome of abnormally low BLOOD GLUCOSE level. Clinical hypoglycemia has diverse etiologies. Severe hypoglycemia eventually lead to glucose deprivation of the CENTRAL NERVOUS SYSTEM resulting in HUNGER; SWEATING; PARESTHESIA; impaired mental function; SEIZURES; COMA; and even DEATH. Fasting Hypoglycemia,Postabsorptive Hypoglycemia,Postprandial Hypoglycemia,Reactive Hypoglycemia,Hypoglycemia, Fasting,Hypoglycemia, Postabsorptive,Hypoglycemia, Postprandial,Hypoglycemia, Reactive
D007036 Hypothermia, Induced Abnormally low BODY TEMPERATURE that is intentionally induced in warm-blooded animals by artificial means. In humans, mild or moderate hypothermia has been used to reduce tissue damages, particularly after cardiac or spinal cord injuries and during subsequent surgeries. Induced Hypothermia,Mild Hypothermia, Induced,Moderate Hypothermia, Induced,Targeted Temperature Management,Therapeutic Hypothermia,Hypothermia, Therapeutic,Induced Mild Hypothermia,Induced Mild Hypothermias,Induced Moderate Hypothermia,Induced Moderate Hypothermias,Mild Hypothermias, Induced,Moderate Hypothermias, Induced,Targeted Temperature Managements
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009924 Organ Culture Techniques A technique for maintenance or growth of animal organs in vitro. It refers to three-dimensional cultures of undisaggregated tissue retaining some or all of the histological features of the tissue in vivo. (Freshney, Culture of Animal Cells, 3d ed, p1) Organ Culture,Culture Technique, Organ,Culture Techniques, Organ,Organ Culture Technique,Organ Cultures
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D006019 Glycolysis A metabolic process that converts GLUCOSE into two molecules of PYRUVIC ACID through a series of enzymatic reactions. Energy generated by this process is conserved in two molecules of ATP. Glycolysis is the universal catabolic pathway for glucose, free glucose, or glucose derived from complex CARBOHYDRATES, such as GLYCOGEN and STARCH. Embden-Meyerhof Pathway,Embden-Meyerhof-Parnas Pathway,Embden Meyerhof Parnas Pathway,Embden Meyerhof Pathway,Embden-Meyerhof Pathways,Pathway, Embden-Meyerhof,Pathway, Embden-Meyerhof-Parnas,Pathways, Embden-Meyerhof

Related Publications

Toshihiro Takata, and Bo Yang, and Takashi Sakurai, and Yasuhiro Okada, and Koichi Yokono
November 1984, The Journal of physiology,
Toshihiro Takata, and Bo Yang, and Takashi Sakurai, and Yasuhiro Okada, and Koichi Yokono
December 1993, Pflugers Archiv : European journal of physiology,
Toshihiro Takata, and Bo Yang, and Takashi Sakurai, and Yasuhiro Okada, and Koichi Yokono
November 1997, The Journal of physiology,
Toshihiro Takata, and Bo Yang, and Takashi Sakurai, and Yasuhiro Okada, and Koichi Yokono
August 1993, Brain research,
Toshihiro Takata, and Bo Yang, and Takashi Sakurai, and Yasuhiro Okada, and Koichi Yokono
April 1979, The Journal of physiology,
Toshihiro Takata, and Bo Yang, and Takashi Sakurai, and Yasuhiro Okada, and Koichi Yokono
April 1982, The Journal of physiology,
Toshihiro Takata, and Bo Yang, and Takashi Sakurai, and Yasuhiro Okada, and Koichi Yokono
December 1982, The Journal of physiology,
Toshihiro Takata, and Bo Yang, and Takashi Sakurai, and Yasuhiro Okada, and Koichi Yokono
April 1986, The Journal of physiology,
Toshihiro Takata, and Bo Yang, and Takashi Sakurai, and Yasuhiro Okada, and Koichi Yokono
September 2009, Human molecular genetics,
Toshihiro Takata, and Bo Yang, and Takashi Sakurai, and Yasuhiro Okada, and Koichi Yokono
April 1992, Hearing research,
Copied contents to your clipboard!