Novel glutamate- and GABA-independent synaptic depolarization in granule cells of guinea-pig hippocampus. 1997

M Forti, and H B Michelson
Department of Pharmacology, State University of New York Health Science Center at Brooklyn 11203, USA.

1. Dual intracellular recordings of granule cells, hilar interneurons and CA3 pyramidal cells were performed in transverse slices of guinea-pig hippocampus. At resting membrane potential, in the presence of 4-aminopyridine, ionotropic glutamate receptor antagonists and the GABAA receptor antagonist bicuculline, granule cells showed spontaneous, large amplitude depolarizations correlated with synchronous bursting activity of interneurons. 2. Under these conditions, pyramidal cells exhibited large amplitude monophasic GABAB inhibitory postsynaptic potentials (IPSPs) synchronous with the GABAergic interneuron burst discharges. The granule cells also received a GABAB input, which was evident only when the neurons were depolarized by DC injection. The GABAB receptor antagonist CGP 55,845A (CGP) blocked the GABAB IPSPs in both pyramidal cells and granule cells; however, the depolarizing potential in granule cells was unaffected by the drug. 3. The granule cells depolarization in the presence of CGP was monophasic and exhibited linear voltage dependence with a reversal potential around -40 mV, suggesting that it was generated by a synaptic input activating a mixed cationic current. 4. The granule cell depolarization was abolished following the addition of tetrodotoxin to the bath. In addition, perfusing the slice with a low Ca(2+)-containing solution (0.5 mM Ca(2+)-10 mM Mg2+) also abolished the granule cell depolarization, confirming the synaptic origin of the event. 5. (S)-Methyl-4-carboxyphenylglycine, L-(+)-2-amino-3-phosphonopropionic acid, propranolol and atropine did not affect the granule cell depolarization, indicating that metabotropic glutamate receptors, beta-adrenergic receptors and muscarinic cholinergic receptors were not involved in generating the granule cell depolarizing synaptic response. 6. These findings indicate that, in the absence of both glutamatergic and GABAergic inputs, synchronous interneuronal activity can produce a depolarizing synaptic response in granule cells. The neurochemical responsible for the depolarization is currently under investigation.

UI MeSH Term Description Entries
D007395 Interneurons Most generally any NEURONS which are not motor or sensory. Interneurons may also refer to neurons whose AXONS remain within a particular brain region in contrast to projection neurons, which have axons projecting to other brain regions. Intercalated Neurons,Intercalated Neuron,Interneuron,Neuron, Intercalated,Neurons, Intercalated
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse

Related Publications

M Forti, and H B Michelson
December 1993, Pflugers Archiv : European journal of physiology,
M Forti, and H B Michelson
August 1991, European journal of pharmacology,
M Forti, and H B Michelson
July 1989, Journal of neurochemistry,
M Forti, and H B Michelson
April 2005, Molecular pharmacology,
M Forti, and H B Michelson
January 1990, Progress in clinical and biological research,
Copied contents to your clipboard!