Synapsin-like immunoreactivity is present in hair cells and efferent terminals of the toadfish crista ampullaris. 2005

G R Holstein, and G P Martinelli, and R A Nicolae, and T M Rosenthal, and V L Friedrich
Department of Neurology, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1140, New York, NY 10029, USA. gay.holstein@mssm.edu

The synapsins are presynaptic membrane-associated proteins involved in neurotransmitter release. They are differentially expressed in tissues and cells of the central and peripheral nervous system. In vestibular end organs of mammals, synapsin I-like immunoreactivity has been reported in efferent and afferent terminals and in afferent nerve calyces surrounding type I hair cells. In addition, synapsin I has recently been described in several non-neural cell lines. The present study was conducted to locate synapsin-like immunoreactivity in the neuronal and non-neuronal cells of the fish crista ampullaris, to examine the possibility that the non-neuronal sensory receptor cells express synapsins in vivo. Synapsin-like immunostaining was visualized by immunofluorescence detection in wholemounts of the toadfish crista ampullaris using multiphoton laser scanning microscopy and by electron microscopic visualization of post-embedding immunogold labeling. The results demonstrate that synapsin-like immunoreactivity is present in vestibular hair cells and efferent boutons of the toadfish crista ampullaris. Afferent endings are not labeled. Staining in hair cells is not associated with the synaptic ribbons, suggesting that there is an additional, non-synaptic role for the synapsins in some non-neuronal cells of vertebrates. Moreover, while the cristae of amniote and anamniote species share many functional attributes, differences in their synaptic vesicle-associated protein profiles appear to reflect their disparate hair cell populations.

UI MeSH Term Description Entries
D008297 Male Males
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D004525 Efferent Pathways Nerve structures through which impulses are conducted from a nerve center toward a peripheral site. Such impulses are conducted via efferent neurons (NEURONS, EFFERENT), such as MOTOR NEURONS, autonomic neurons, and hypophyseal neurons. Motor Pathways,Efferent Pathway,Pathway, Efferent,Pathways, Efferent
D004856 Postural Balance A POSTURE in which an ideal body mass distribution is achieved. Postural balance provides the body carriage stability and conditions for normal functions in stationary position or in movement, such as sitting, standing, or walking. Postural Control,Posture Balance,Posture Control,Posture Equilibrium,Balance, Postural,Musculoskeletal Equilibrium,Postural Equilibrium,Balance, Posture,Control, Postural,Control, Posture,Equilibrium, Musculoskeletal,Equilibrium, Postural,Equilibrium, Posture,Postural Controls,Posture Balances,Posture Controls,Posture Equilibriums
D005260 Female Females
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014722 Vestibule, Labyrinth An oval, bony chamber of the inner ear, part of the bony labyrinth. It is continuous with bony COCHLEA anteriorly, and SEMICIRCULAR CANALS posteriorly. The vestibule contains two communicating sacs (utricle and saccule) of the balancing apparatus. The oval window on its lateral wall is occupied by the base of the STAPES of the MIDDLE EAR. Vestibular Apparatus,Ear Vestibule,Vestibular Labyrinth,Vestibule of Ear,Vestibulum Auris,Apparatus, Vestibular,Ear Vestibules,Labyrinth Vestibule,Labyrinth Vestibules,Labyrinth, Vestibular,Labyrinths, Vestibular,Vestibular Labyrinths,Vestibule, Ear,Vestibules, Ear,Vestibules, Labyrinth
D016704 Synapsins A family of synaptic vesicle-associated proteins involved in the short-term regulation of NEUROTRANSMITTER release. Synapsin I, the predominant member of this family, links SYNAPTIC VESICLES to ACTIN FILAMENTS in the presynaptic nerve terminal. These interactions are modulated by the reversible PHOSPHORYLATION of synapsin I through various signal transduction pathways. The protein is also a substrate for cAMP- and CALCIUM-CALMODULIN-DEPENDENT PROTEIN KINASES. It is believed that these functional properties are also shared by synapsin II. Synapsin,Synapsin I,Synapsin II,Synapsin III

Related Publications

G R Holstein, and G P Martinelli, and R A Nicolae, and T M Rosenthal, and V L Friedrich
January 1993, Zhonghua er bi yan hou ke za zhi,
G R Holstein, and G P Martinelli, and R A Nicolae, and T M Rosenthal, and V L Friedrich
November 2005, Journal of neuroscience research,
G R Holstein, and G P Martinelli, and R A Nicolae, and T M Rosenthal, and V L Friedrich
January 1992, Journal of vestibular research : equilibrium & orientation,
G R Holstein, and G P Martinelli, and R A Nicolae, and T M Rosenthal, and V L Friedrich
February 1994, Hearing research,
G R Holstein, and G P Martinelli, and R A Nicolae, and T M Rosenthal, and V L Friedrich
February 1991, Hearing research,
G R Holstein, and G P Martinelli, and R A Nicolae, and T M Rosenthal, and V L Friedrich
February 1995, Neuroreport,
G R Holstein, and G P Martinelli, and R A Nicolae, and T M Rosenthal, and V L Friedrich
November 1990, Brain research,
G R Holstein, and G P Martinelli, and R A Nicolae, and T M Rosenthal, and V L Friedrich
November 1992, Journal of neurophysiology,
G R Holstein, and G P Martinelli, and R A Nicolae, and T M Rosenthal, and V L Friedrich
September 1999, Hearing research,
G R Holstein, and G P Martinelli, and R A Nicolae, and T M Rosenthal, and V L Friedrich
November 1993, Pflugers Archiv : European journal of physiology,
Copied contents to your clipboard!