Afferents of vocalization-controlling periaqueductal regions in the squirrel monkey. 2005

Eva Dujardin, and Uwe Jürgens
German Primate Center, Göttingen, Kellnerweg 4, 37077 Göttingen, Germany. edujardin@dpz.gwdg.de

In order to determine the input of vocalization-controlling regions of the midbrain periaqueductal gray (PAG), wheat germ agglutinin-horseradish peroxidase was injected in six squirrel monkeys (Saimiri sciureus) at PAG sites yielding vocalization when injected with the glutamate agonist homocysteic acid. Brains were scanned for retrogradely labeled areas common to all six animals. The results show that the vocalization-eliciting sites receive a widespread input, with the heaviest projections coming from the surrounding PAG, dorsomedial and ventromedial hypothalamus, medial preoptic region, substantia nigra pars diffusa, zona incerta and reticular formation of the mesencephalon, pons, and medulla. The heaviest cortical input reaches the PAG from the mediofrontal cortex. Moderate to weak projections come from the insula, lateral prefrontal, and premotor cortex as well as the superior and middle temporal cortex. Subcortical moderate to weak projections reach the PAG from the central and medial amygdala, nucleus of the stria terminalis, septum, nucleus accumbens, lateral preoptic region, lateral and posterior hypothalamus, globus pallidus, pretectal area, deep layers of the superior colliculus, the pericentral inferior colliculus, mesencephalic trigeminal nucleus, locus coeruleus, substantia nigra pars compacta, dorsal and ventral raphe, vestibular nuclei, spinal trigeminal nucleus, solitary tract nucleus, and nucleus gracilis. The input of the periaqueductal vocalization-eliciting regions thus is dominated by limbic, motivation-controlling afferents; input, however, also comes from sensory, motor, arousal-controlling, and cognitive brain areas.

UI MeSH Term Description Entries
D008032 Limbic System A set of forebrain structures common to all mammals that is defined functionally and anatomically. It is implicated in the higher integration of visceral, olfactory, and somatic information as well as homeostatic responses including fundamental survival behaviors (feeding, mating, emotion). For most authors, it includes the AMYGDALA; EPITHALAMUS; GYRUS CINGULI; hippocampal formation (see HIPPOCAMPUS); HYPOTHALAMUS; PARAHIPPOCAMPAL GYRUS; SEPTAL NUCLEI; anterior nuclear group of thalamus, and portions of the basal ganglia. (Parent, Carpenter's Human Neuroanatomy, 9th ed, p744; NeuroNames, http://rprcsgi.rprc.washington.edu/neuronames/index.html (September 2, 1998)). Limbic Systems,System, Limbic,Systems, Limbic
D008297 Male Males
D009042 Motivation Those factors which cause an organism to behave or act in either a goal-seeking or satisfying manner. They may be influenced by physiological drives or by external stimuli. Incentives,Disincentives,Expectations,Disincentive,Expectation,Incentive,Motivations
D010487 Periaqueductal Gray Central gray matter surrounding the CEREBRAL AQUEDUCT in the MESENCEPHALON. Physiologically it is probably involved in RAGE reactions, the LORDOSIS REFLEX; FEEDING responses, bladder tonus, and pain. Mesencephalic Central Gray,Midbrain Central Gray,Central Gray Substance of Midbrain,Central Periaqueductal Gray,Griseum Centrale,Griseum Centrale Mesencephali,Periaqueductal Gray Matter,Substantia Grisea Centralis,Substantia Grisea Centralis Mesencephali,Central Gray, Mesencephalic,Central Gray, Midbrain,Gray Matter, Periaqueductal,Gray, Central Periaqueductal,Griseum Centrale Mesencephalus,Periaqueductal Grays, Central
D012154 Reticular Formation A region extending from the PONS & MEDULLA OBLONGATA through the MESENCEPHALON, characterized by a diversity of neurons of various sizes and shapes, arranged in different aggregations and enmeshed in a complicated fiber network. Formation, Reticular,Formations, Reticular,Reticular Formations
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D003071 Cognition Intellectual or mental process whereby an organism obtains knowledge. Cognitive Function,Cognitions,Cognitive Functions,Function, Cognitive,Functions, Cognitive
D004644 Emotions Those affective states which can be experienced and have arousing and motivational properties. Feelings,Regret,Emotion,Feeling,Regrets
D000344 Afferent Pathways Nerve structures through which impulses are conducted from a peripheral part toward a nerve center. Afferent Pathway,Pathway, Afferent,Pathways, Afferent

Related Publications

Eva Dujardin, and Uwe Jürgens
January 1993, Brain research bulletin,
Eva Dujardin, and Uwe Jürgens
June 1982, Brain research,
Eva Dujardin, and Uwe Jürgens
May 1986, Brain research,
Eva Dujardin, and Uwe Jürgens
June 1970, Experimental brain research,
Eva Dujardin, and Uwe Jürgens
February 1979, Experimental brain research,
Eva Dujardin, and Uwe Jürgens
October 2000, The Journal of the Acoustical Society of America,
Eva Dujardin, and Uwe Jürgens
January 1991, Folia primatologica; international journal of primatology,
Eva Dujardin, and Uwe Jürgens
February 1982, Brain research,
Copied contents to your clipboard!