Hepatocyte growth factor and keratinocyte growth factor regulation of epithelial and stromal corneal wound healing. 2005

Louise M Carrington, and Mike Boulton
Cell and Molecular Biology Unit, Department of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom.

OBJECTIVE To investigate the effects of hepatocyte growth factor (HGF) and keratinocyte growth factor (KGF) on early wound healing in the corneal epithelium and stroma. METHODS Cell and Molecular Biology Unit, Department of Optometry and Vision Sciences, Cardiff University, and the Cardiff Institute of Tissue Engineering and Repair, Cardiff, United Kingdom. METHODS Corneal keratocyte cell cultures and wounded corneal organ cultures (both maintained in serum-free conditions) were treated with 0.1 to 100 ng/mL of HGF or KGF for up to 5 days. Cell cultures were assessed for proliferation, migration, and differentiation into myofibroblasts. Organ cultures were used to evaluate the effect of HGF and KGF on reepithelialization following a wound, epithelial morphology and stratification, keratocyte numbers directly beneath the wounded area, and differentiation into myofibroblasts. RESULTS The 2 growth factors had opposite effects on the rate of reepithelialization, with HGF delaying and KGF accelerating epithelial coverage of the wound. Morphologic assessment showed that both growth factors affected the stratification and differentiation of the epithelium. Both factors stimulated proliferation of keratocytes in serum-free cell culture, although neither induced the appearance of myofibroblasts. This was in contrast to wounded organ cultures treated with 100 ng/mL HGF, in which large numbers of myofibroblasts were observed under the wound. Control corneas and those receiving KGF contained very few myofibroblasts. Keratocyte repopulation of the denuded area under the wound was enhanced in the presence of HGF but decreased in response to KGF. CONCLUSIONS Hepatocyte growth factor and KGF appeared to have potent and often opposite effects on epithelial and stromal cells following a wound. Hepatocyte growth factor was more detrimental than KGF, resulting in an aberrant epithelium and mass differentiation of keratocytes into myofibroblasts. Inhibition of HGF may be an appropriate therapeutic intervention in the case of persistent epithelial defects and to prevent fibrosis following a corneal stromal wound such as can occur after refractive surgery.

UI MeSH Term Description Entries
D009924 Organ Culture Techniques A technique for maintenance or growth of animal organs in vitro. It refers to three-dimensional cultures of undisaggregated tissue retaining some or all of the histological features of the tissue in vivo. (Freshney, Culture of Animal Cells, 3d ed, p1) Organ Culture,Culture Technique, Organ,Culture Techniques, Organ,Organ Culture Technique,Organ Cultures
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002452 Cell Count The number of CELLS of a specific kind, usually measured per unit volume or area of sample. Cell Density,Cell Number,Cell Counts,Cell Densities,Cell Numbers,Count, Cell,Counts, Cell,Densities, Cell,Density, Cell,Number, Cell,Numbers, Cell
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003319 Corneal Stroma The lamellated connective tissue constituting the thickest layer of the cornea between the Bowman and Descemet membranes. Corneal Stromas,Stroma, Corneal,Stromas, Corneal
D005346 Fibroblast Growth Factors A family of small polypeptide growth factors that share several common features including a strong affinity for HEPARIN, and a central barrel-shaped core region of 140 amino acids that is highly homologous between family members. Although originally studied as proteins that stimulate the growth of fibroblasts this distinction is no longer a requirement for membership in the fibroblast growth factor family. DNA Synthesis Factor,Fibroblast Growth Factor,Fibroblast Growth Regulatory Factor,Growth Factor, Fibroblast,Growth Factors, Fibroblast
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Louise M Carrington, and Mike Boulton
January 1998, [Zhonghua yan ke za zhi] Chinese journal of ophthalmology,
Louise M Carrington, and Mike Boulton
July 1995, Investigative ophthalmology & visual science,
Louise M Carrington, and Mike Boulton
January 2018, Experimental eye research,
Louise M Carrington, and Mike Boulton
April 2005, [Zhonghua yan ke za zhi] Chinese journal of ophthalmology,
Louise M Carrington, and Mike Boulton
February 2010, Brain research bulletin,
Louise M Carrington, and Mike Boulton
June 1987, American journal of ophthalmology,
Louise M Carrington, and Mike Boulton
January 1991, Growth factors (Chur, Switzerland),
Louise M Carrington, and Mike Boulton
December 1993, Investigative ophthalmology & visual science,
Louise M Carrington, and Mike Boulton
January 1996, Zentralblatt fur Chirurgie,
Louise M Carrington, and Mike Boulton
June 2003, Indian journal of ophthalmology,
Copied contents to your clipboard!