Differential expression of a novel murine non-receptor protein tyrosine phosphatase during differentiation of P19 embryonal carcinoma cells. 1992

J den Hertog, and C E Pals, and L J Jonk, and W Kruijer
Hubrecht Laboratory, The Netherlands Institute for Developmental Biology, Uppsalalaan, Utrecht.

Protein phosphorylation on tyrosine residues is one of the major mechanisms of cell signal transduction and is regulated by protein tyrosine kinases and protein tyrosine phosphatases. Here we report the molecular cloning of an additional member of the protein tyrosine phosphatase-family from differentiated murine P19 embryonal carcinoma cells. This non-receptor protein tyrosine phosphatase, P19-PTP, does not contain regulatory sequences, homologous to the ones found in other non-receptor PTPases. P19-PTP is differentially expressed during in vitro differentiation of P19 EC cells, in that P19-PTP mRNA could only be detected in embryoid bodies, derived from P19 cells.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D012045 Regulatory Sequences, Nucleic Acid Nucleic acid sequences involved in regulating the expression of genes. Nucleic Acid Regulatory Sequences,Regulatory Regions, Nucleic Acid (Genetics),Region, Regulatory,Regions, Regulatory,Regulator Regions, Nucleic Acid,Regulatory Region,Regulatory Regions
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

J den Hertog, and C E Pals, and L J Jonk, and W Kruijer
May 2000, Differentiation; research in biological diversity,
J den Hertog, and C E Pals, and L J Jonk, and W Kruijer
June 1990, Nucleic acids research,
J den Hertog, and C E Pals, and L J Jonk, and W Kruijer
May 1998, Biochemical and biophysical research communications,
J den Hertog, and C E Pals, and L J Jonk, and W Kruijer
January 2002, Neuromuscular disorders : NMD,
J den Hertog, and C E Pals, and L J Jonk, and W Kruijer
February 2001, FEBS letters,
J den Hertog, and C E Pals, and L J Jonk, and W Kruijer
May 1995, Brain research. Molecular brain research,
J den Hertog, and C E Pals, and L J Jonk, and W Kruijer
January 2000, International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience,
J den Hertog, and C E Pals, and L J Jonk, and W Kruijer
August 2005, Neurotoxicology,
Copied contents to your clipboard!