Differential expression of jun and fos genes during differentiation of mouse P19 embryonal carcinoma cells. 1990

R P de Groot, and J Schoorlemmer, and S T van Genesen, and W Kruijer
Hubrecht Laboratory, Netherlands Institute for Developmental Biology, Utrecht.

The jun and fos gene families encode DNA binding proteins involved in transcriptional regulation of genes containing a TPA responsive element (TRE). To study their role in gene regulation during early mammalian development, expression and transcription regulatory properties of their gene products were investigated during retinoic acid (RA) induced differentiation of P19 embryonal carcinoma (EC) cells. Our results show, that c-jun is expressed at low but detectable levels in undifferentiated P19 EC cells and at elevated levels in its RA differentiated derivatives, corresponding with increased expression of Jun and TRE binding activity. Jun D is constitutively expressed at constant levels in both undifferentiated and differentiated P19 cells, while jun B and c-fos are not expressed. Addition of TPA to undifferentiated P19 cells does not result in induction of c-jun, jun B and c-fos, while these genes are transiently induced in RA-differentiated P19 cells. In addition, TPA treatment resulted in expression of Fos and Jun protein in RA-differentiated, but not in undifferentiated P19 cells. Addition of TPA to P19 EC cells expressing low levels of TRE binding proteins is neither followed by transcriptional activation of the TRE reporter gene nor by induction of c-jun, previously shown to be autoregulated by its own gene product. By contrast, in P19 cells differentiated by RA that contain elevated levels of TRE binding proteins, TRE dependent transcription is enhanced upon TPA treatment.

UI MeSH Term Description Entries
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011518 Proto-Oncogene Proteins Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins
D011519 Proto-Oncogenes Normal cellular genes homologous to viral oncogenes. The products of proto-oncogenes are important regulators of biological processes and appear to be involved in the events that serve to maintain the ordered procession through the cell cycle. Proto-oncogenes have names of the form c-onc. Proto-Oncogene,Proto Oncogene,Proto Oncogenes
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013755 Tetradecanoylphorbol Acetate A phorbol ester found in CROTON OIL with very effective tumor promoting activity. It stimulates the synthesis of both DNA and RNA. Phorbol Myristate Acetate,12-Myristoyl-13-acetylphorbol,12-O-Tetradecanoyl Phorbol 13-Acetate,Tetradecanoylphorbol Acetate, 4a alpha-Isomer,12 Myristoyl 13 acetylphorbol,12 O Tetradecanoyl Phorbol 13 Acetate,13-Acetate, 12-O-Tetradecanoyl Phorbol,Acetate, Phorbol Myristate,Acetate, Tetradecanoylphorbol,Myristate Acetate, Phorbol,Phorbol 13-Acetate, 12-O-Tetradecanoyl,Tetradecanoylphorbol Acetate, 4a alpha Isomer
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D014212 Tretinoin An important regulator of GENE EXPRESSION during growth and development, and in NEOPLASMS. Tretinoin, also known as retinoic acid and derived from maternal VITAMIN A, is essential for normal GROWTH; and EMBRYONIC DEVELOPMENT. An excess of tretinoin can be teratogenic. It is used in the treatment of PSORIASIS; ACNE VULGARIS; and several other SKIN DISEASES. It has also been approved for use in promyelocytic leukemia (LEUKEMIA, PROMYELOCYTIC, ACUTE). Retinoic Acid,Vitamin A Acid,Retin-A,Tretinoin Potassium Salt,Tretinoin Sodium Salt,Tretinoin Zinc Salt,Vesanoid,all-trans-Retinoic Acid,beta-all-trans-Retinoic Acid,trans-Retinoic Acid,Acid, Retinoic,Acid, Vitamin A,Acid, all-trans-Retinoic,Acid, beta-all-trans-Retinoic,Acid, trans-Retinoic,Potassium Salt, Tretinoin,Retin A,Salt, Tretinoin Potassium,Salt, Tretinoin Sodium,Salt, Tretinoin Zinc,Sodium Salt, Tretinoin,Zinc Salt, Tretinoin,all trans Retinoic Acid,beta all trans Retinoic Acid,trans Retinoic Acid

Related Publications

R P de Groot, and J Schoorlemmer, and S T van Genesen, and W Kruijer
June 1990, The EMBO journal,
R P de Groot, and J Schoorlemmer, and S T van Genesen, and W Kruijer
August 1991, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research,
R P de Groot, and J Schoorlemmer, and S T van Genesen, and W Kruijer
January 2002, Neuromuscular disorders : NMD,
R P de Groot, and J Schoorlemmer, and S T van Genesen, and W Kruijer
August 2005, Neurotoxicology,
R P de Groot, and J Schoorlemmer, and S T van Genesen, and W Kruijer
October 2007, Biochemical and biophysical research communications,
R P de Groot, and J Schoorlemmer, and S T van Genesen, and W Kruijer
March 1996, Neuroscience letters,
R P de Groot, and J Schoorlemmer, and S T van Genesen, and W Kruijer
May 1992, Biochemical and biophysical research communications,
R P de Groot, and J Schoorlemmer, and S T van Genesen, and W Kruijer
May 1995, Brain research. Molecular brain research,
R P de Groot, and J Schoorlemmer, and S T van Genesen, and W Kruijer
January 2000, International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience,
R P de Groot, and J Schoorlemmer, and S T van Genesen, and W Kruijer
November 1992, Development (Cambridge, England),
Copied contents to your clipboard!