Anthrax lethal toxin induces endothelial barrier dysfunction. 2005

Jason M Warfel, and Amber D Steele, and Felice D'Agnillo
Laboratory of Biochemistry and Vascular Biology, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, 29 Lincoln Drive, Bldg. 29, Rm. 129, Bethesda, MD 20892, USA.

Hemorrhage and pleural effusion are prominent pathological features of systemic anthrax infection. We examined the effect of anthrax lethal toxin (LT), a major virulence factor of Bacillus anthracis, on the barrier function of primary human lung microvascular endothelial cells. We also examined the distribution patterns of cytoskeletal actin and vascular endothelial-cadherin (VE-cadherin), both of which are involved in barrier function regulation. Endothelial monolayers cultured on porous membrane inserts were treated with the LT components lethal factor (LF) and protective antigen (PA) individually, or in combination. LT induced a concentration- and time-dependent decrease in transendothelial electrical resistance that correlated with increased permeability to fluorescently labeled albumin. LT also produced a marked increase in central actin stress fibers and significantly altered VE-cadherin distribution as revealed by immunofluorescence microscopy and cell surface enzyme-linked immunosorbent assay. Treatment with LF, PA, or the combination of an inactive LF mutant and PA did not alter barrier function or the distribution of actin or VE-cadherin. LT-induced barrier dysfunction was not dependent on endothelial apoptosis or necrosis. The present findings support a possible role for LT-induced barrier dysfunction in the vascular permeability changes accompanying systemic anthrax infection.

UI MeSH Term Description Entries
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D002199 Capillary Permeability The property of blood capillary ENDOTHELIUM that allows for the selective exchange of substances between the blood and surrounding tissues and through membranous barriers such as the BLOOD-AIR BARRIER; BLOOD-AQUEOUS BARRIER; BLOOD-BRAIN BARRIER; BLOOD-NERVE BARRIER; BLOOD-RETINAL BARRIER; and BLOOD-TESTIS BARRIER. Small lipid-soluble molecules such as carbon dioxide and oxygen move freely by diffusion. Water and water-soluble molecules cannot pass through the endothelial walls and are dependent on microscopic pores. These pores show narrow areas (TIGHT JUNCTIONS) which may limit large molecule movement. Microvascular Permeability,Permeability, Capillary,Permeability, Microvascular,Vascular Permeability,Capillary Permeabilities,Microvascular Permeabilities,Permeabilities, Capillary,Permeabilities, Microvascular,Permeabilities, Vascular,Permeability, Vascular,Vascular Permeabilities
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004797 Enzyme-Linked Immunosorbent Assay An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed. ELISA,Assay, Enzyme-Linked Immunosorbent,Assays, Enzyme-Linked Immunosorbent,Enzyme Linked Immunosorbent Assay,Enzyme-Linked Immunosorbent Assays,Immunosorbent Assay, Enzyme-Linked,Immunosorbent Assays, Enzyme-Linked
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000942 Antigens, Bacterial Substances elaborated by bacteria that have antigenic activity. Bacterial Antigen,Bacterial Antigens,Antigen, Bacterial
D001427 Bacterial Toxins Toxic substances formed in or elaborated by bacteria; they are usually proteins with high molecular weight and antigenicity; some are used as antibiotics and some to skin test for the presence of or susceptibility to certain diseases. Bacterial Toxin,Toxins, Bacterial,Toxin, Bacterial
D015820 Cadherins Calcium-dependent cell adhesion proteins. They are important in the formation of ADHERENS JUNCTIONS between cells. Cadherins are classified by their distinct immunological and tissue specificities, either by letters (E- for epithelial, N- for neural, and P- for placental cadherins) or by numbers (cadherin-12 or N-cadherin 2 for brain-cadherin). Cadherins promote cell adhesion via a homophilic mechanism as in the construction of tissues and of the whole animal body. Cadherin,E-Cadherins,Epithelial-Cadherin,Liver Cell Adhesion Molecules,N-Cadherins,Neural Cadherin,P-Cadherins,Uvomorulin,Cadherin-1,Cadherin-2,Cadherin-3,E-Cadherin,Epithelial-Cadherins,Liver Cell Adhesion Molecule,N-Cadherin,Neural Cadherins,P-Cadherin,Placental Cadherins,Cadherin 1,Cadherin 2,Cadherin 3,Cadherin, Neural,Cadherins, Neural,Cadherins, Placental,E Cadherin,E Cadherins,Epithelial Cadherin,Epithelial Cadherins,N Cadherin,N Cadherins,P Cadherin,P Cadherins
D017097 Electric Impedance The resistance to the flow of either alternating or direct electrical current. Bioelectrical Impedance,Electric Resistance,Impedance,Ohmic Resistance,Biolectric Impedance,Electrical Impedance,Electrical Resistance,Impedance, Bioelectrical,Impedance, Biolectric,Impedance, Electric,Impedance, Electrical,Ohmic Resistances,Resistance, Electric,Resistance, Electrical,Resistance, Ohmic,Resistances, Ohmic

Related Publications

Jason M Warfel, and Amber D Steele, and Felice D'Agnillo
January 2004, Infection and immunity,
Jason M Warfel, and Amber D Steele, and Felice D'Agnillo
April 2012, Journal of cellular physiology,
Jason M Warfel, and Amber D Steele, and Felice D'Agnillo
June 2011, Toxins,
Jason M Warfel, and Amber D Steele, and Felice D'Agnillo
October 2013, International journal of cardiology,
Jason M Warfel, and Amber D Steele, and Felice D'Agnillo
February 2008, Proceedings of the National Academy of Sciences of the United States of America,
Jason M Warfel, and Amber D Steele, and Felice D'Agnillo
January 2013, PloS one,
Jason M Warfel, and Amber D Steele, and Felice D'Agnillo
November 2002, FEBS letters,
Jason M Warfel, and Amber D Steele, and Felice D'Agnillo
August 2006, Antimicrobial agents and chemotherapy,
Jason M Warfel, and Amber D Steele, and Felice D'Agnillo
February 2006, Infection and immunity,
Jason M Warfel, and Amber D Steele, and Felice D'Agnillo
January 2012, PloS one,
Copied contents to your clipboard!