Escherichia coli RecQ helicase: a player in thymineless death. 2005

Hiroaki Nakayama
Kyushu University (Emeritus), Fukuoka 812-8581, Japan. nakh@ruby.ocn.ne.jp

DNA helicases of the RecQ family are distributed among most organisms and are thought to play important roles in various aspects of DNA metabolism. The founding member of the family, RecQ of Escherichia coli, was identified in a study aimed at clarifying the mechanism of thymineless death, a phenomenon underlying the mechanism for the cytotoxicity of the anticancer drug 5-fluorouracil. The present article is concerned solely with E. coli RecQ and tries to offer an integrated picture of the past and present of its study. Finally a brief discussion is given on how RecQ is involved in thymineless death.

UI MeSH Term Description Entries
D004265 DNA Helicases Proteins that catalyze the unwinding of duplex DNA during replication by binding cooperatively to single-stranded regions of DNA or to short regions of duplex DNA that are undergoing transient opening. In addition, DNA helicases are DNA-dependent ATPases that harness the free energy of ATP hydrolysis to translocate DNA strands. ATP-Dependent DNA Helicase,DNA Helicase,DNA Unwinding Protein,DNA Unwinding Proteins,ATP-Dependent DNA Helicases,DNA Helicase A,DNA Helicase E,DNA Helicase II,DNA Helicase III,ATP Dependent DNA Helicase,ATP Dependent DNA Helicases,DNA Helicase, ATP-Dependent,DNA Helicases, ATP-Dependent,Helicase, ATP-Dependent DNA,Helicase, DNA,Helicases, ATP-Dependent DNA,Helicases, DNA,Protein, DNA Unwinding,Unwinding Protein, DNA,Unwinding Proteins, DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine
D013941 Thymine One of four constituent bases of DNA. 5-Methyluracil,5 Methyluracil

Related Publications

Hiroaki Nakayama
January 1977, Zeitschrift fur Naturforschung. Section C, Biosciences,
Hiroaki Nakayama
September 2003, The Journal of biological chemistry,
Hiroaki Nakayama
June 1967, Journal of bacteriology,
Hiroaki Nakayama
June 1973, Journal of general microbiology,
Hiroaki Nakayama
May 2006, The Journal of biological chemistry,
Hiroaki Nakayama
October 1967, Biochemical and biophysical research communications,
Hiroaki Nakayama
August 1969, Journal of bacteriology,
Hiroaki Nakayama
June 2007, The Journal of biological chemistry,
Hiroaki Nakayama
April 1997, Proceedings of the National Academy of Sciences of the United States of America,
Hiroaki Nakayama
February 2004, The Journal of biological chemistry,
Copied contents to your clipboard!