Thymineless death in Escherichia coli: inactivation and recovery. 1969

D J Cummings, and A R Kusy

The effects of chloramphenicol (CAP) on the progress of thymineless death (TLD), nalidixic acid (NA) inactivation, ultraviolet (UV) irradiation, and mitomycin C (MC) inactivation were studied in Escherichia coli B, B(s-1), B(s-3), B(s-12), and B/r. This was done before, during, and after inactivation. During the progress of inactivation, it was found that at 10 to 20 mug of CAP per ml, up to 50% of the UV-sensitive bacteria survived TLD and about 10% survived NA. In E. coli B/r, at these concentrations of CAP, about 10 to 15% of the cells survived TLD and about 20 to 25% survived NA. Concentrations of CAP greater than 25 mug/ml actually increased the sensitivity of E. coli B, B(s-1), B(s-3), and B(s-12) to inactivation by either TLD or NA; at 150 mug of CAP per ml, the sensitivity of E. coli B/r to inactivation also increased. When E. coli B cells were incubated in CAP prior to inactivation, the longer the preincubation the longer onset of TLD was delayed; NA inactivation was also affected in that the rate of inactivation after CAP incubation was greatly decreased. Preincubation of E. coli B/r with CAP had much less effect on the progress of inactivation. After thymineless death, incubation in CAP plus thymine led to a rapid and almost complete recovery of E. coli B and B(s-12). Lesser recoveries were observed after inactivation due to UV, NA, or MC inactivation. E. coli B(s-1) and B/r did not recover viability after any mode of inactivation, and E. coli B(s-3) and B(s-12) recovered from UV to about 20% of the initial titer. It was suggested that protein synthesis, in particular proteins involved in deoxyribonucleic synthesis, was a determining factor in these inactivating and recovery events.

UI MeSH Term Description Entries
D008937 Mitomycins A group of methylazirinopyrroloindolediones obtained from certain Streptomyces strains. They are very toxic antibiotics used as ANTINEOPLASTIC AGENTS in some solid tumors. PORFIROMYCIN and MITOMYCIN are the most useful members of the group.
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009268 Nalidixic Acid A synthetic 1,8-naphthyridine antimicrobial agent with a limited bacteriocidal spectrum. It is an inhibitor of the A subunit of bacterial DNA GYRASE. Nalidixin,Nalidixate Sodium,Nalidixate Sodium Anhydrous,Nevigramon,Sodium Nalidixic Acid, Anhydrous,Sodium Nalidixic Acid, Monohydrate,Acid, Nalidixic,Anhydrous, Nalidixate Sodium,Sodium Anhydrous, Nalidixate,Sodium, Nalidixate
D002701 Chloramphenicol An antibiotic first isolated from cultures of Streptomyces venequelae in 1947 but now produced synthetically. It has a relatively simple structure and was the first broad-spectrum antibiotic to be discovered. It acts by interfering with bacterial protein synthesis and is mainly bacteriostatic. (From Martindale, The Extra Pharmacopoeia, 29th ed, p106) Cloranfenicol,Kloramfenikol,Levomycetin,Amphenicol,Amphenicols,Chlornitromycin,Chlorocid,Chloromycetin,Detreomycin,Ophthochlor,Syntomycin
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D012329 RNA, Bacterial Ribonucleic acid in bacteria having regulatory and catalytic roles as well as involvement in protein synthesis. Bacterial RNA
D013941 Thymine One of four constituent bases of DNA. 5-Methyluracil,5 Methyluracil
D014466 Ultraviolet Rays That portion of the electromagnetic spectrum immediately below the visible range and extending into the x-ray frequencies. The longer wavelengths (near-UV or biotic or vital rays) are necessary for the endogenous synthesis of vitamin D and are also called antirachitic rays; the shorter, ionizing wavelengths (far-UV or abiotic or extravital rays) are viricidal, bactericidal, mutagenic, and carcinogenic and are used as disinfectants. Actinic Rays,Black Light, Ultraviolet,UV Light,UV Radiation,Ultra-Violet Rays,Ultraviolet Light,Ultraviolet Radiation,Actinic Ray,Light, UV,Light, Ultraviolet,Radiation, UV,Radiation, Ultraviolet,Ray, Actinic,Ray, Ultra-Violet,Ray, Ultraviolet,Ultra Violet Rays,Ultra-Violet Ray,Ultraviolet Black Light,Ultraviolet Black Lights,Ultraviolet Radiations,Ultraviolet Ray

Related Publications

D J Cummings, and A R Kusy
October 1967, Biochemical and biophysical research communications,
D J Cummings, and A R Kusy
August 1961, Journal of bacteriology,
D J Cummings, and A R Kusy
January 1977, Zeitschrift fur Naturforschung. Section C, Biosciences,
D J Cummings, and A R Kusy
August 1968, Journal of general microbiology,
D J Cummings, and A R Kusy
June 1967, Journal of bacteriology,
D J Cummings, and A R Kusy
June 1973, Journal of general microbiology,
D J Cummings, and A R Kusy
November 1966, Radiation research,
D J Cummings, and A R Kusy
January 1971, Folia microbiologica,
D J Cummings, and A R Kusy
September 2005, Mutation research,
D J Cummings, and A R Kusy
August 1973, Journal of bacteriology,
Copied contents to your clipboard!