Characterization of neurons of the nucleus tractus solitarius pars centralis. 2005

V Baptista, and Z L Zheng, and F H Coleman, and R C Rogers, and R A Travagli
Department of Neuroscience, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, 70808, USA.

Esophageal sensory afferent inputs terminate principally in the central subnucleus of the tractus solitarius (cNTS). Neurons of the cNTS comprise two major neurochemical subpopulations. One contains neurons that are nitric oxide synthase (NOS) immunoreactive (-IR) while the other comprises neurons that are tyrosine hydroxylase (TH)-IR. We have shown recently that TH-IR neurons are involved in esophageal-distention induced gastric relaxation. We used whole cell patch clamp techniques in rat brainstem slices combined with immunohistochemical and morphological reconstructions to characterize cNTS neurons. Postrecording reconstruction of cNTS neurons revealed two morphological neuronal subtypes; one group of cells (41 out of 131 neurons, i.e., 31%) had a multipolar soma, while the other group (87 out of 131 neurons, i.e., 66%) had a bipolar soma. Of the 43 cells in which we conducted a neurochemical examination, 15 displayed TH-IR (9 with bipolar morphology, 6 with multipolar morphology) while the remaining 28 neurons did not display TH-IR (18 with bipolar morphology, 10 with multipolar morphology). Even though the range of electrophysiological properties varied significantly, morphological or neurochemical distinctions did not reveal characteristics peculiar to the subgroups. Spontaneous excitatory postsynaptic currents (sEPSC) recorded in cNTS neurons had a frequency of 1.5 +/- 0.15 events s(-1) and an amplitude of 27 +/- 1.2 pA (Vh = -50 mV) and were abolished by pretreatment with 30 muM AP-5 and 10 muM CNQX, indicating the involvement of both NMDA and non-NMDA receptors. Some cNTS neurons also received a GABAergic input that was abolished by perfusion with 30-50 muM bicuculline. In conclusion, our data show that despite the heterogeneity of morphological and neurochemical membrane properties, the electrophysiological characteristics of cNTS neurons are not a distinguishing feature.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002452 Cell Count The number of CELLS of a specific kind, usually measured per unit volume or area of sample. Cell Density,Cell Number,Cell Counts,Cell Densities,Cell Numbers,Count, Cell,Counts, Cell,Densities, Cell,Density, Cell,Number, Cell,Numbers, Cell
D004307 Dose-Response Relationship, Radiation The relationship between the dose of administered radiation and the response of the organism or tissue to the radiation. Dose Response Relationship, Radiation,Dose-Response Relationships, Radiation,Radiation Dose-Response Relationship,Radiation Dose-Response Relationships,Relationship, Radiation Dose-Response,Relationships, Radiation Dose-Response
D004347 Drug Interactions The action of a drug that may affect the activity, metabolism, or toxicity of another drug. Drug Interaction,Interaction, Drug,Interactions, Drug
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

V Baptista, and Z L Zheng, and F H Coleman, and R C Rogers, and R A Travagli
January 2015, Journal of neurophysiology,
V Baptista, and Z L Zheng, and F H Coleman, and R C Rogers, and R A Travagli
August 2011, American journal of physiology. Regulatory, integrative and comparative physiology,
V Baptista, and Z L Zheng, and F H Coleman, and R C Rogers, and R A Travagli
June 1994, The American journal of physiology,
V Baptista, and Z L Zheng, and F H Coleman, and R C Rogers, and R A Travagli
March 1979, Sensory processes,
V Baptista, and Z L Zheng, and F H Coleman, and R C Rogers, and R A Travagli
January 1985, Brain research,
V Baptista, and Z L Zheng, and F H Coleman, and R C Rogers, and R A Travagli
November 1993, The American journal of physiology,
V Baptista, and Z L Zheng, and F H Coleman, and R C Rogers, and R A Travagli
January 1987, Brain research bulletin,
V Baptista, and Z L Zheng, and F H Coleman, and R C Rogers, and R A Travagli
September 2006, Neuroscience,
V Baptista, and Z L Zheng, and F H Coleman, and R C Rogers, and R A Travagli
May 1995, Neuroscience letters,
V Baptista, and Z L Zheng, and F H Coleman, and R C Rogers, and R A Travagli
August 2012, Neuroscience,
Copied contents to your clipboard!