Cough-related neurons in the nucleus tractus solitarius of decerebrate cats. 2012

A Haji, and Y Ohi, and S Kimura
Laboratory of Neuropharmacology, School of Pharmacy, Aichi Gakuin University, Nagoya, Japan. haji@dpc.agu.ac.jp

This study was carried out on decerebrate, paralyzed and artificially ventilated cats to investigate the central regulatory mechanism for cough reflex. Fictive cough was induced by repetitive stimulation of the superior laryngeal nerve (SLN) or the nucleus tractus solitarius (NTS), and characterized by an increased inspiratory discharge in the phrenic nerve (stage 1 of cough; S1C) and large burst discharge in the iliohypogastric nerve (stage 2 of cough; S2C). Membrane potential was recorded from the neurons located in the cough-inducible sites of the NTS. Seven augmenting inspiratory (aug-I), 25 inspiratory-modulated (I-mod) and 16 non-respiratory (non-R) neurons were encountered, all of which showed short-latency (7.5 ± 1.6 ms, n=48) waves of excitatory and inhibitory postsynaptic potentials (EPSPs and IPSPs) in response to single pulse stimulation of the SLN. Out of these, all 7 aug-I and 12 I-mod neurons depolarized during the S1C and hyperpolarized during the S2C (DH-type response). Three I-mod and five non-R neurons showed membrane hyperpolarization during both stages (HH-type response). Ten I-mod and three non-R neurons displayed membrane depolarization during the S1C and S2C (DD-type response). The remaining eight non-R neurons showed no response during the fictive cough (NN-type response) but a long-lasting EPSP wave to single SLN stimulation. The NTS neurons recorded here were divided into three groups. Group I neurons with the NN-type response may be the second-order relay neurons. Group II neurons with the DD-type response may integrate the tussigenic afferent information and send a gate signal to the cough pattern generator. Group III neurons with either DH-type or HH-type response may constitute the network of cough pattern generation or modulatory circuits recruited during the cough reflex. The present study suggests that Group II neurons may play a gating role in generating the cough reflex.

UI MeSH Term Description Entries
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D012018 Reflex An involuntary movement or exercise of function in a part, excited in response to a stimulus applied to the periphery and transmitted to the brain or spinal cord.
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D003371 Cough A sudden, audible expulsion of air from the lungs through a partially closed glottis, preceded by inhalation. It is a protective response that serves to clear the trachea, bronchi, and/or lungs of irritants and secretions, or to prevent aspiration of foreign materials into the lungs. Coughs
D003655 Decerebrate State A condition characterized by abnormal posturing of the limbs that is associated with injury to the brainstem. This may occur as a clinical manifestation or induced experimentally in animals. The extensor reflexes are exaggerated leading to rigid extension of the limbs accompanied by hyperreflexia and opisthotonus. This condition is usually caused by lesions which occur in the region of the brainstem that lies between the red nuclei and the vestibular nuclei. In contrast, decorticate rigidity is characterized by flexion of the elbows and wrists with extension of the legs and feet. The causative lesion for this condition is located above the red nuclei and usually consists of diffuse cerebral damage. (From Adams et al., Principles of Neurology, 6th ed, p358) Decerebrate Posturing,Decorticate Rigidity,Decorticate State,Rigidity, Decerebrate,Rigidity, Decorticate,Decerebrate Posturings,Decerebrate Rigidity,Decerebrate States,Decorticate Rigidities,Decorticate States,Posturing, Decerebrate,Posturings, Decerebrate,Rigidities, Decorticate,State, Decerebrate,States, Decerebrate
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017552 Solitary Nucleus GRAY MATTER located in the dorsomedial part of the MEDULLA OBLONGATA associated with the solitary tract. The solitary nucleus receives inputs from most organ systems including the terminations of the facial, glossopharyngeal, and vagus nerves. It is a major coordinator of AUTONOMIC NERVOUS SYSTEM regulation of cardiovascular, respiratory, gustatory, gastrointestinal, and chemoreceptive aspects of HOMEOSTASIS. The solitary nucleus is also notable for the large number of NEUROTRANSMITTERS which are found therein. Nucleus Solitarius,Nuclei Tractus Solitarii,Nucleus Tractus Solitarii,Nucleus of Solitary Tract,Nucleus of Tractus Solitarius,Nucleus of the Solitary Tract,Solitary Nuclear Complex,Solitary Tract Nucleus,Complex, Solitary Nuclear,Complices, Solitary Nuclear,Nuclear Complex, Solitary,Nuclear Complices, Solitary,Nuclei Tractus Solitarius,Nucleus Tractus Solitarius,Nucleus, Solitary,Nucleus, Solitary Tract,Solitarii, Nuclei Tractus,Solitarius Nucleus, Tractus,Solitarius, Nuclei Tractus,Solitary Nuclear Complices,Tractus Solitarii, Nuclei,Tractus Solitarius Nucleus,Tractus Solitarius, Nuclei

Related Publications

A Haji, and Y Ohi, and S Kimura
March 1988, Brain research,
A Haji, and Y Ohi, and S Kimura
March 1979, Sensory processes,
A Haji, and Y Ohi, and S Kimura
August 2005, Brain research,
A Haji, and Y Ohi, and S Kimura
June 1994, The American journal of physiology,
A Haji, and Y Ohi, and S Kimura
January 1985, Brain research,
A Haji, and Y Ohi, and S Kimura
January 1987, Brain research bulletin,
A Haji, and Y Ohi, and S Kimura
May 1995, Neuroscience letters,
A Haji, and Y Ohi, and S Kimura
January 2006, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!