Sodium butyrate sensitizes human glioma cells to TRAIL-mediated apoptosis through inhibition of Cdc2 and the subsequent downregulation of survivin and XIAP. 2005

Eun Hee Kim, and Hee Sue Kim, and Seung U Kim, and Eun Joo Noh, and Jong-Soo Lee, and Kyeong Sook Choi
Institute for Medical Sciences, Ajou University School of Medicine, Wonchon-dong, Youngtong-gu, Suwon, South Korea.

In TNF-related apoptosis-inducing ligand (TRAIL)-resistant glioma cells, co-treatment with nontoxic doses of sodium butyrate and TRAIL resulted in a marked increase of TRAIL-induced apoptosis. This combined treatment was also cytotoxic to glioma cells overexpressing Bcl-2 or Bcl-xL, but not to normal human astrocytes, thus offering an attractive strategy for safely treating resistant gliomas. Cotreatment with sodium butyrate facilitated completion of proteolytic processing of procaspase-3 that was partially blocked by treatment with TRAIL alone. We also found that treatment with sodium butyrate significantly decreased the protein levels of survivin and X-linked inhibitor of apoptosis protein (XIAP), two major caspase inhibitors. Overexpression of survivin and XIAP attenuated sodium butyrate-stimulated TRAIL-induced apoptosis, suggesting its involvement in conferring TRAIL resistance to glioma cells. Furthermore, the kinase activities of Cdc2 and Cdk2 were significantly decreased following sodium butyrate treatment, accompanying downregulation of cyclin A and cyclin B, as well as upregulation of p21. Forced expression of Cdc2 plus cyclin B, but not Cdk2 plus cyclin A, attenuated sodium butyrate/TRAIL-induced apoptosis, overriding sodium butyrate-mediated downregulation of survivin and XIAP. Therefore, Cdc2-mediated downregulation of survivin and XIAP by sodium butyrate may contribute to the recovery of TRAIL sensitivity in glioma cells.

UI MeSH Term Description Entries
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D008869 Microtubule-Associated Proteins High molecular weight proteins found in the MICROTUBULES of the cytoskeletal system. Under certain conditions they are required for TUBULIN assembly into the microtubules and stabilize the assembled microtubules. Ensconsin,Epithelial MAP, 115 kDa,Epithelial Microtubule-Associate Protein, 115 kDa,MAP4,Microtubule Associated Protein,Microtubule Associated Protein 4,Microtubule Associated Protein 7,Microtubule-Associated Protein,Microtubule-Associated Protein 7,E-MAP-115,MAP1 Microtubule-Associated Protein,MAP2 Microtubule-Associated Protein,MAP3 Microtubule-Associated Protein,Microtubule Associated Proteins,Microtubule-Associated Protein 1,Microtubule-Associated Protein 2,Microtubule-Associated Protein 3,7, Microtubule-Associated Protein,Associated Protein, Microtubule,E MAP 115,Epithelial Microtubule Associate Protein, 115 kDa,MAP1 Microtubule Associated Protein,MAP2 Microtubule Associated Protein,MAP3 Microtubule Associated Protein,Microtubule Associated Protein 1,Microtubule Associated Protein 2,Microtubule Associated Protein 3,Microtubule-Associated Protein, MAP1,Microtubule-Associated Protein, MAP2,Microtubule-Associated Protein, MAP3,Protein 7, Microtubule-Associated,Protein, Microtubule Associated,Protein, Microtubule-Associated
D009363 Neoplasm Proteins Proteins whose abnormal expression (gain or loss) are associated with the development, growth, or progression of NEOPLASMS. Some neoplasm proteins are tumor antigens (ANTIGENS, NEOPLASM), i.e. they induce an immune reaction to their tumor. Many neoplasm proteins have been characterized and are used as tumor markers (BIOMARKERS, TUMOR) when they are detectable in cells and body fluids as monitors for the presence or growth of tumors. Abnormal expression of ONCOGENE PROTEINS is involved in neoplastic transformation, whereas the loss of expression of TUMOR SUPPRESSOR PROTEINS is involved with the loss of growth control and progression of the neoplasm. Proteins, Neoplasm
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D005910 Glioma Benign and malignant central nervous system neoplasms derived from glial cells (i.e., astrocytes, oligodendrocytes, and ependymocytes). Astrocytes may give rise to astrocytomas (ASTROCYTOMA) or glioblastoma multiforme (see GLIOBLASTOMA). Oligodendrocytes give rise to oligodendrogliomas (OLIGODENDROGLIOMA) and ependymocytes may undergo transformation to become EPENDYMOMA; CHOROID PLEXUS NEOPLASMS; or colloid cysts of the third ventricle. (From Escourolle et al., Manual of Basic Neuropathology, 2nd ed, p21) Glial Cell Tumors,Malignant Glioma,Mixed Glioma,Glial Cell Tumor,Glioma, Malignant,Glioma, Mixed,Gliomas,Gliomas, Malignant,Gliomas, Mixed,Malignant Gliomas,Mixed Gliomas,Tumor, Glial Cell,Tumors, Glial Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000077022 Survivin An apoptosis inhibitory protein that contains a single baculoviral IAP repeat (BIR) domain. It associates with MICROTUBULES and functions to regulate cell proliferation as a component of the chromosome passage protein complex (CPC), performing essential roles for localization of the complex, chromosome alignment, segregation during MITOSIS and CYTOKINESIS, and assembly of the MITOTIC SPINDLE. It is expressed by fetal kidney and liver cells and highly expressed in ADENOCARCINOMA and high-grade LYMPHOMA. BIRC5 Protein,Baculoviral IAP Repeat-containing Protein 5,Baculoviral IAP Repeat containing Protein 5
D001253 Astrocytes A class of large neuroglial (macroglial) cells in the central nervous system - the largest and most numerous neuroglial cells in the brain and spinal cord. Astrocytes (from "star" cells) are irregularly shaped with many long processes, including those with "end feet" which form the glial (limiting) membrane and directly and indirectly contribute to the BLOOD-BRAIN BARRIER. They regulate the extracellular ionic and chemical environment, and "reactive astrocytes" (along with MICROGLIA) respond to injury. Astroglia,Astroglia Cells,Astroglial Cells,Astrocyte,Astroglia Cell,Astroglial Cell,Astroglias,Cell, Astroglia,Cell, Astroglial
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D014409 Tumor Necrosis Factor-alpha Serum glycoprotein produced by activated MACROPHAGES and other mammalian MONONUCLEAR LEUKOCYTES. It has necrotizing activity against tumor cell lines and increases ability to reject tumor transplants. Also known as TNF-alpha, it is only 30% homologous to TNF-beta (LYMPHOTOXIN), but they share TNF RECEPTORS. Cachectin,TNF-alpha,Tumor Necrosis Factor Ligand Superfamily Member 2,Cachectin-Tumor Necrosis Factor,TNF Superfamily, Member 2,TNFalpha,Tumor Necrosis Factor,Cachectin Tumor Necrosis Factor,Tumor Necrosis Factor alpha

Related Publications

Eun Hee Kim, and Hee Sue Kim, and Seung U Kim, and Eun Joo Noh, and Jong-Soo Lee, and Kyeong Sook Choi
October 2020, Oncology letters,
Eun Hee Kim, and Hee Sue Kim, and Seung U Kim, and Eun Joo Noh, and Jong-Soo Lee, and Kyeong Sook Choi
August 2006, Oncology reports,
Eun Hee Kim, and Hee Sue Kim, and Seung U Kim, and Eun Joo Noh, and Jong-Soo Lee, and Kyeong Sook Choi
November 2008, Molecular cancer therapeutics,
Eun Hee Kim, and Hee Sue Kim, and Seung U Kim, and Eun Joo Noh, and Jong-Soo Lee, and Kyeong Sook Choi
May 2014, The Journal of investigative dermatology,
Eun Hee Kim, and Hee Sue Kim, and Seung U Kim, and Eun Joo Noh, and Jong-Soo Lee, and Kyeong Sook Choi
July 2014, Bioelectromagnetics,
Eun Hee Kim, and Hee Sue Kim, and Seung U Kim, and Eun Joo Noh, and Jong-Soo Lee, and Kyeong Sook Choi
April 2013, Oncology reports,
Eun Hee Kim, and Hee Sue Kim, and Seung U Kim, and Eun Joo Noh, and Jong-Soo Lee, and Kyeong Sook Choi
August 2004, Cell death and differentiation,
Eun Hee Kim, and Hee Sue Kim, and Seung U Kim, and Eun Joo Noh, and Jong-Soo Lee, and Kyeong Sook Choi
January 2018, Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology,
Eun Hee Kim, and Hee Sue Kim, and Seung U Kim, and Eun Joo Noh, and Jong-Soo Lee, and Kyeong Sook Choi
January 2014, Hepato-gastroenterology,
Eun Hee Kim, and Hee Sue Kim, and Seung U Kim, and Eun Joo Noh, and Jong-Soo Lee, and Kyeong Sook Choi
September 2014, Anti-cancer drugs,
Copied contents to your clipboard!