The localization of nerve growth factor-like immunoreactivity in the adult rat basal forebrain and hippocampal formation. 1992

J M Conner, and D Muir, and S Varon, and T Hagg, and M Manthorpe
Department of Neurosciences, University of California, San Diego, La Jolla 92093.

The role of nerve growth factor (NGF) as a target derived neurotrophic agent for specific cell populations in the peripheral nervous system has been well documented and much evidence suggests that NGF may serve a similar neurotrophic role in the CNS supporting the cholinergic neurons of the basal forebrain. Previous attempts to localize NGF by immunocytochemical methods, however, have not yielded evidence confirming the regional distribution expected based upon reported levels of extractable NGF. In the present study, affinity purified polyclonal antibodies to beta-NGF and a modified immunohistochemical protocol were used to demonstrate specific NGF-like immunoreactivity in the adult rat hippocampal formation and basal forebrain. In the hippocampal formation, NGF-like immunoreactivity was localized primarily within the hilus of the dentate gyrus and within stratum lucidum of the CA3 and CA2 hippocampal subfields. Staining appeared to be associated with cell processes and was similar to the reported distribution of mossy fibers suggesting that granule cells may either serve as a primary source of hippocampal NGF or that mossy fibers selectively accumulate NGF produced by other cell populations. In the basal forebrain, NGF-like immunoreactivity was localized within neuronal cell bodies of the medial septum, diagonal band, and nucleus basalis of Meynert and was further demonstrated to colocalize exclusively with LNGF-R positive neurons. These findings demonstrate the presence of an NGF-like antigen in association with cholinergic neurons of the basal forebrain and strongly support the hypothesis that NGF may serve as an endogenous trophic factor for this adult neuronal population.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D009414 Nerve Growth Factors Factors which enhance the growth potentialities of sensory and sympathetic nerve cells. Neurite Outgrowth Factor,Neurite Outgrowth Factors,Neuronal Growth-Associated Protein,Neuronotrophic Factor,Neurotrophic Factor,Neurotrophic Factors,Neurotrophin,Neurotrophins,Growth-Associated Proteins, Neuronal,Neuronal Growth-Associated Proteins,Neuronotrophic Factors,Neurotrophic Protein,Neurotrophic Proteins,Proteins, Neuronal Growth-Associated,Factor, Neurite Outgrowth,Factor, Neuronotrophic,Factor, Neurotrophic,Factors, Nerve Growth,Factors, Neurite Outgrowth,Factors, Neuronotrophic,Factors, Neurotrophic,Growth Associated Proteins, Neuronal,Growth-Associated Protein, Neuronal,Neuronal Growth Associated Protein,Neuronal Growth Associated Proteins,Outgrowth Factor, Neurite,Outgrowth Factors, Neurite,Protein, Neuronal Growth-Associated
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010275 Parasympathetic Nervous System The craniosacral division of the autonomic nervous system. The cell bodies of the parasympathetic preganglionic fibers are in brain stem nuclei and in the sacral spinal cord. They synapse in cranial autonomic ganglia or in terminal ganglia near target organs. The parasympathetic nervous system generally acts to conserve resources and restore homeostasis, often with effects reciprocal to the sympathetic nervous system. Nervous System, Parasympathetic,Nervous Systems, Parasympathetic,Parasympathetic Nervous Systems,System, Parasympathetic Nervous,Systems, Parasympathetic Nervous
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D005260 Female Females
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016548 Prosencephalon The anterior of the three primitive cerebral vesicles of the embryonic brain arising from the NEURAL TUBE. It subdivides to form DIENCEPHALON and TELENCEPHALON. (Stedmans Medical Dictionary, 27th ed) Forebrain,Forebrains
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

J M Conner, and D Muir, and S Varon, and T Hagg, and M Manthorpe
March 1998, Neuroscience,
J M Conner, and D Muir, and S Varon, and T Hagg, and M Manthorpe
April 1997, Brain research,
J M Conner, and D Muir, and S Varon, and T Hagg, and M Manthorpe
March 1994, The Journal of comparative neurology,
J M Conner, and D Muir, and S Varon, and T Hagg, and M Manthorpe
February 1995, Brain research,
J M Conner, and D Muir, and S Varon, and T Hagg, and M Manthorpe
January 1983, Medical biology,
J M Conner, and D Muir, and S Varon, and T Hagg, and M Manthorpe
January 1992, Acta neurobiologiae experimentalis,
J M Conner, and D Muir, and S Varon, and T Hagg, and M Manthorpe
May 1994, Neuroscience,
J M Conner, and D Muir, and S Varon, and T Hagg, and M Manthorpe
January 1995, Acta neuropathologica,
J M Conner, and D Muir, and S Varon, and T Hagg, and M Manthorpe
January 1990, International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience,
J M Conner, and D Muir, and S Varon, and T Hagg, and M Manthorpe
March 1989, The Journal of comparative neurology,
Copied contents to your clipboard!