Nerve growth factor-like immunoreactive profiles in the primate basal forebrain and hippocampal formation. 1994

E J Mufson, and J M Conner, and S Varon, and J H Kordower
Department of Neurological Sciences, Rush Alzheimer's Disease Center, Rush Presbyterian-St. Luke's Medical Center, Chicago, IL 60612.

The distribution of nerve growth factor (NGF), the prototypic neurotropin, within the basal forebrain and hippocampal formation of young adult monkeys and aged humans was characterized with an affinity purified polyclonal beta-NGF antibody raised against mouse beta-NGF. In the basal forebrain of both primates, a granular NGF-like immunoreactive (ir) reaction product was observed within neurons of the medial septum, nucleus of the diagonal band, and nucleus basalis of Meynert. NGF-like immunoreactivity exclusively colocalized within p75 NGF receptor (NGFR) containing basal forebrain neurons. The intensity of NGF immunolabeling varied between cell bodies. Many NGF-ir perikarya were highly immunoreactive. In other basal forebrain neurons, NGF-like immunoreactivity was either undetectable or minimally expressed. In the hippocampus of both species, NGF-like immunoreactivity was mainly localized within the hilus of the dentate gyrus and within CA3 and CA2 hippocampal subfields. A marked diminution in NGF-like staining was seen in CA1. Within the hippocampal formation, NGF-like immunoreactivity was heaviest within the neuropil of stratum radiatum, intermediate in stratum oriens, and lightest in stratum pyramidal. NGF-like immunoreactivity was not found within the granule or pyramidal cells of the dentate gyrus and hippocampal formation, respectively. These findings demonstrate the presence of an NGF-like antigen in association with monkey and human magnocellular basal forebrain neurons and within their hippocampal target sites. This lends support to the hypothesis that NGF is internalized from sources located within target regions of the primate cholinergic basal forebrain neurons and is retrogradely transported to these cell bodies where the NGF trophic effect likely occurs.

UI MeSH Term Description Entries
D008252 Macaca fascicularis A species of the genus MACACA which typically lives near the coast in tidal creeks and mangrove swamps primarily on the islands of the Malay peninsula. Burmese Long-Tailed Macaque,Crab-Eating Monkey,Cynomolgus Monkey,M. f. aurea,M. fascicularis,Macaca fascicularis aurea,Monkey, Crab-Eating,Monkey, Cynomolgus,Crab-Eating Macaque,Burmese Long Tailed Macaque,Crab Eating Macaque,Crab Eating Monkey,Crab-Eating Macaques,Crab-Eating Monkeys,Cynomolgus Monkeys,Long-Tailed Macaque, Burmese,Macaque, Burmese Long-Tailed,Macaque, Crab-Eating,Monkey, Crab Eating
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009414 Nerve Growth Factors Factors which enhance the growth potentialities of sensory and sympathetic nerve cells. Neurite Outgrowth Factor,Neurite Outgrowth Factors,Neuronal Growth-Associated Protein,Neuronotrophic Factor,Neurotrophic Factor,Neurotrophic Factors,Neurotrophin,Neurotrophins,Growth-Associated Proteins, Neuronal,Neuronal Growth-Associated Proteins,Neuronotrophic Factors,Neurotrophic Protein,Neurotrophic Proteins,Proteins, Neuronal Growth-Associated,Factor, Neurite Outgrowth,Factor, Neuronotrophic,Factor, Neurotrophic,Factors, Nerve Growth,Factors, Neurite Outgrowth,Factors, Neuronotrophic,Factors, Neurotrophic,Growth Associated Proteins, Neuronal,Growth-Associated Protein, Neuronal,Neuronal Growth Associated Protein,Neuronal Growth Associated Proteins,Outgrowth Factor, Neurite,Outgrowth Factors, Neurite,Protein, Neuronal Growth-Associated
D002428 Cebus A genus of the family CEBIDAE, subfamily CEBINAE, consisting of gracile or untufted capuchin species. Tufted capuchins belong to genus SAPAJUS. Members include C. capucinus, C. nigrivultatus, and C. albifrons. Cebus inhabits the forests of Central and South Americas. Cebu,Gracile Capuchins,Monkey, Capuchin,Monkey, Ring-Tail,Monkey, Ringtail,Monkey, Ringtailed,Untufted Capuchins,White-Fronted Capuchin,Monkey, Ring-Tailed,Capuchin Monkey,Capuchin Monkeys,Capuchin, Gracile,Capuchin, Untufted,Capuchin, White-Fronted,Gracile Capuchin,Monkey, Ring Tail,Monkey, Ring Tailed,Ring-Tail Monkey,Ring-Tail Monkeys,Ring-Tailed Monkey,Ring-Tailed Monkeys,Ringtail Monkey,Ringtail Monkeys,Ringtailed Monkey,Ringtailed Monkeys,Untufted Capuchin,White Fronted Capuchin,White-Fronted Capuchins
D005260 Female Females
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016548 Prosencephalon The anterior of the three primitive cerebral vesicles of the embryonic brain arising from the NEURAL TUBE. It subdivides to form DIENCEPHALON and TELENCEPHALON. (Stedmans Medical Dictionary, 27th ed) Forebrain,Forebrains

Related Publications

E J Mufson, and J M Conner, and S Varon, and J H Kordower
May 1992, The Journal of comparative neurology,
E J Mufson, and J M Conner, and S Varon, and J H Kordower
July 1989, The Journal of comparative neurology,
E J Mufson, and J M Conner, and S Varon, and J H Kordower
November 1989, The Journal of comparative neurology,
E J Mufson, and J M Conner, and S Varon, and J H Kordower
January 1995, Acta neuropathologica,
E J Mufson, and J M Conner, and S Varon, and J H Kordower
April 1997, Brain research,
E J Mufson, and J M Conner, and S Varon, and J H Kordower
January 1991, Annals of the New York Academy of Sciences,
E J Mufson, and J M Conner, and S Varon, and J H Kordower
February 1993, Japanese journal of pharmacology,
E J Mufson, and J M Conner, and S Varon, and J H Kordower
July 1986, Brain research,
E J Mufson, and J M Conner, and S Varon, and J H Kordower
November 1988, Neuroscience letters,
Copied contents to your clipboard!