Dihydrofolate reductase gene as a versatile expression marker. 1992

M Iwakura, and T Tanaka
Research Institute for Polymers and Textiles, Ibaraki.

The Escherichia coli dihydrofolate reductase (DHFR) gene has been used as a genetic marker specifying trimethoprim resistance (TmpR). In order to use the DHFR gene as a versatile expression marker, we have constructed three types of plasmids: promoter cloning vector, terminator cloning vector, and the plasmid containing the DHFR gene cassette. In these systems, the selection of recombinant plasmids was carried out just by examining the TmpR phenotype of the transformed cells. Then, levels of the enzymatic activity of DHFR were measured to evaluate the efficiency of promoters and terminators in the fused DNA fragment. An expression plasmid which resulted in the E. coli host cells being able to produce DHFR up to 20% of total cellular proteins was also constructed by changing the promoter and Shine-Dalgarno sequences of the DHFR gene.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D004587 Electrophoresis, Agar Gel Electrophoresis in which agar or agarose gel is used as the diffusion medium. Electrophoresis, Agarose Gel,Agar Gel Electrophoresis,Agarose Gel Electrophoresis,Gel Electrophoresis, Agar,Gel Electrophoresis, Agarose
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005819 Genetic Markers A phenotypically recognizable genetic trait which can be used to identify a genetic locus, a linkage group, or a recombination event. Chromosome Markers,DNA Markers,Markers, DNA,Markers, Genetic,Genetic Marker,Marker, Genetic,Chromosome Marker,DNA Marker,Marker, Chromosome,Marker, DNA,Markers, Chromosome
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D013728 Terminator Regions, Genetic DNA sequences recognized as signals to end GENETIC TRANSCRIPTION. Terminator Sequence,Transcriptional Terminator Regions,Terminator Regions,Genetic Terminator Region,Genetic Terminator Regions,Region, Genetic Terminator,Region, Terminator,Region, Transcriptional Terminator,Regions, Genetic Terminator,Regions, Terminator,Regions, Transcriptional Terminator,Sequence, Terminator,Sequences, Terminator,Terminator Region,Terminator Region, Genetic,Terminator Region, Transcriptional,Terminator Regions, Transcriptional,Terminator Sequences,Transcriptional Terminator Region
D013762 Tetrahydrofolate Dehydrogenase An enzyme of the oxidoreductase class that catalyzes the reaction 7,8-dihyrofolate and NADPH to yield 5,6,7,8-tetrahydrofolate and NADPH+, producing reduced folate for amino acid metabolism, purine ring synthesis, and the formation of deoxythymidine monophosphate. Methotrexate and other folic acid antagonists used as chemotherapeutic drugs act by inhibiting this enzyme. (Dorland, 27th ed) EC 1.5.1.3. Dihydrofolate Dehydrogenase,Dihydrofolate Reductase,Folic Acid Reductase,Acid Reductase, Folic,Dehydrogenase, Dihydrofolate,Dehydrogenase, Tetrahydrofolate,Reductase, Dihydrofolate,Reductase, Folic Acid
D014296 Trimethoprim Resistance Nonsusceptibility of bacteria to the action of TRIMETHOPRIM.

Related Publications

M Iwakura, and T Tanaka
December 1993, Insect biochemistry and molecular biology,
M Iwakura, and T Tanaka
January 1989, Developmental genetics,
M Iwakura, and T Tanaka
May 1990, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
M Iwakura, and T Tanaka
July 1988, Nucleic acids research,
M Iwakura, and T Tanaka
November 1989, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!