Expression of plasmid R388-encoded type II dihydrofolate reductase as a dominant selective marker in Saccharomyces cerevisiae. 1984

A Miyajima, and I Miyajima, and K Arai, and N Arai

The R388 plasmid-encoded drug-resistant type II dihydrofolate reductase gene (R . dhfr) was expressed in Saccharomyces cerevisiae by fusing the R . dhfr coding sequence to the yeast TRP5 promoter. Yeast cells harboring these recombinant plasmids grew in media with 10 micrograms of methotrexate per ml and 5 mg of sulfanilamide per ml, a condition which inhibits the growth of wild-type cells. Addition of a 390-base-pair fragment from the 3'-noncoding region of TRP5 downstream from R . dhfr increased expression. Presumably, the added segment promoted termination or polyadenylation or both of the R . dhfr transcript. The activity of the plasmid-encoded dihydrofolate reductase and the copy number of the R . dhfr plasmid in cells grown in drug-selective media were higher by one order of magnitude than those grown in nutrition-selective media. Plasmid copy number, as well as the plasmid-encoded enzyme level, decreased when cells were selected for prototrophy. In drug-selective media, the plasmid-encoded enzyme level and the content of R . dhfr transcripts were nearly constant in cells harboring R . dhfr plasmids containing different yeast promoters. In contrast, the plasmid copy number and beta-lactamase activity encoded in cis by plasmids were much higher when R . dhfr was associated with the weak TRP5 promoter than when it was fused to the strong ADC1 promoter. These results indicate that plasmid copy number, i.e., gene dosage of R . dhfr, correlates inversely with the strength of the promoter associated with R . dhfr, and cells with a higher plasmid copy number were enriched in drug-selective media. The transformation efficiency of R . dhfr fused to the ADC1 promoter was almost the same on drug-selective plates as on nutrition-selective plates, indicating that R . dhfr is suitable as a dominant selective transformation marker in S. cerevisiae.

UI MeSH Term Description Entries
D008727 Methotrexate An antineoplastic antimetabolite with immunosuppressant properties. It is an inhibitor of TETRAHYDROFOLATE DEHYDROGENASE and prevents the formation of tetrahydrofolate, necessary for synthesis of thymidylate, an essential component of DNA. Amethopterin,Methotrexate Hydrate,Methotrexate Sodium,Methotrexate, (D)-Isomer,Methotrexate, (DL)-Isomer,Methotrexate, Dicesium Salt,Methotrexate, Disodium Salt,Methotrexate, Sodium Salt,Mexate,Dicesium Salt Methotrexate,Hydrate, Methotrexate,Sodium, Methotrexate
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004351 Drug Resistance Diminished or failed response of an organism, disease or tissue to the intended effectiveness of a chemical or drug. It should be differentiated from DRUG TOLERANCE which is the progressive diminution of the susceptibility of a human or animal to the effects of a drug, as a result of continued administration. Resistance, Drug
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D005799 Genes, Dominant Genes that influence the PHENOTYPE both in the homozygous and the heterozygous state. Conditions, Dominant Genetic,Dominant Genetic Conditions,Genetic Conditions, Dominant,Condition, Dominant Genetic,Dominant Gene,Dominant Genes,Dominant Genetic Condition,Gene, Dominant,Genetic Condition, Dominant
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D000077145 Sulfanilamide A short-acting sulfonamide used as an anti-infective agent. It has lower anti-bacterial activity than SULFAMETHOXAZOLE. 4-aminobenzenesulfonamide,Azol Polvo,Sulfanilamide Barium Salt,Sulfanilamide Cadmium Salt,Sulfanilamide Hydrochloride,Sulfanilamide Lithium Salt,Sulfanilamide Magnesium Salt,Sulfanilamide Monohydrate,Sulfanilamide Silver Salt,Sulfanilamide Sodium,Sulfanilamide Sodium Salt,Sulfanilamide Strontium Salt,Sulfanilamide Zinc Salt,Sulphanilamide,4 aminobenzenesulfonamide
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D013424 Sulfanilamides Compounds based on 4-aminobenzenesulfonamide. The '-anil-' part of the name refers to aniline. Sulphanilamides

Related Publications

A Miyajima, and I Miyajima, and K Arai, and N Arai
March 1988, Nucleic acids research,
A Miyajima, and I Miyajima, and K Arai, and N Arai
January 1981, Molecular & general genetics : MGG,
A Miyajima, and I Miyajima, and K Arai, and N Arai
January 1992, Journal of biochemistry,
A Miyajima, and I Miyajima, and K Arai, and N Arai
April 1993, Journal of medical microbiology,
A Miyajima, and I Miyajima, and K Arai, and N Arai
November 1990, Current genetics,
A Miyajima, and I Miyajima, and K Arai, and N Arai
November 1992, Gene,
A Miyajima, and I Miyajima, and K Arai, and N Arai
December 1999, Current genetics,
A Miyajima, and I Miyajima, and K Arai, and N Arai
December 1993, Insect biochemistry and molecular biology,
A Miyajima, and I Miyajima, and K Arai, and N Arai
March 1992, Gene,
Copied contents to your clipboard!