New insights into alternative mechanisms of immune receptor diversification. 2005

Gary W Litman, and John P Cannon, and Jonathan P Rast
Department of Pediatrics, University of South Florida College of Medicine, USF/ACH Children's Research Institute, St. Petersburg, Florida 33701, USA.

The clonal commitment, selection, and expansion of B and T lymphocytes expressing diversified receptors provide the underlying basis for the jawed vertebrates adaptive immune response. At the core of this process is the rearrangement and somatic modification of segmental genetic elements that encode the constituent components of immunoglobulins and T-cell antigen receptors. No evidence has been found for a similar mechanism outside of jawed vertebrates; however, invertebrates and jawless vertebrates are subjected to continuous exposure to pathogenic bacteria, viruses, and parasites. The invertebrates and jawless vertebrates as well as jawed vertebrates all encode a variety of mediators of innate immunity. Several reports of extensive germline diversification of conventional innate receptors, as well as molecules that resemble innate receptors but undergo germline and somatic modification, have been made recently. The range of such molecules, which include the fibrinogen-related proteins (FREPs) in a mollusc, variable region-containing chitin-binding proteins (VCBPs) in a cephalochordate, variable lymphocyte receptors (VLRs) in jawless vertebrates, and novel immune-type receptors (NITRs) in bony fish, encompasses both the immunoglobulin gene superfamily (IgSF) and leucine-rich repeat (LRR) proteins. Although these molecules vary markedly in form and likely in function, growing evidence suggests that they participate in various types of host defense and thereby represent significant alternatives to current paradigms of innate and adaptive immune receptors. Unusual genetic mechanisms for diversifying recognition proteins may be a widespread characteristic of animal immunity.

UI MeSH Term Description Entries
D007113 Immunity, Innate The capacity of a normal organism to remain unaffected by microorganisms and their toxins. It results from the presence of naturally occurring ANTI-INFECTIVE AGENTS, constitutional factors such as BODY TEMPERATURE and immediate acting immune cells such as NATURAL KILLER CELLS. Immunity, Native,Immunity, Natural,Immunity, Non-Specific,Resistance, Natural,Innate Immune Response,Innate Immunity,Immune Response, Innate,Immune Responses, Innate,Immunity, Non Specific,Innate Immune Responses,Native Immunity,Natural Immunity,Natural Resistance,Non-Specific Immunity
D007448 Invertebrates Animals that have no spinal column. Brachiopoda,Mesozoa,Brachiopodas,Invertebrate,Mesozoas
D011971 Receptors, Immunologic Cell surface molecules on cells of the immune system that specifically bind surface molecules or messenger molecules and trigger changes in the behavior of cells. Although these receptors were first identified in the immune system, many have important functions elsewhere. Immunologic Receptors,Immunologic Receptor,Immunological Receptors,Receptor, Immunologic,Receptors, Immunological
D005075 Biological Evolution The process of cumulative change over successive generations through which organisms acquire their distinguishing morphological and physiological characteristics. Evolution, Biological
D005810 Multigene Family A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed) Gene Clusters,Genes, Reiterated,Cluster, Gene,Clusters, Gene,Families, Multigene,Family, Multigene,Gene Cluster,Gene, Reiterated,Multigene Families,Reiterated Gene,Reiterated Genes
D000222 Adaptation, Physiological The non-genetic biological changes of an organism in response to challenges in its ENVIRONMENT. Adaptation, Physiologic,Adaptations, Physiologic,Adaptations, Physiological,Adaptive Plasticity,Phenotypic Plasticity,Physiological Adaptation,Physiologic Adaptation,Physiologic Adaptations,Physiological Adaptations,Plasticity, Adaptive,Plasticity, Phenotypic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014644 Genetic Variation Genotypic differences observed among individuals in a population. Genetic Diversity,Variation, Genetic,Diversity, Genetic,Diversities, Genetic,Genetic Diversities,Genetic Variations,Variations, Genetic
D014714 Vertebrates Animals having a vertebral column, members of the phylum Chordata, subphylum Craniata comprising mammals, birds, reptiles, amphibians, and fishes. Vertebrate
D015322 Gene Rearrangement, B-Lymphocyte Ordered rearrangement of B-lymphocyte variable gene regions coding for the IMMUNOGLOBULIN CHAINS, thereby contributing to antibody diversity. It occurs during the differentiation of the IMMATURE B-LYMPHOCYTES. B-Cell Gene Rearrangement,B-Lymphocyte Gene Rearrangement,Gene Rearrangement, B-Cell,B Cell Gene Rearrangement,B Lymphocyte Gene Rearrangement,B-Cell Gene Rearrangements,B-Lymphocyte Gene Rearrangements,Gene Rearrangement, B Cell,Gene Rearrangement, B Lymphocyte,Gene Rearrangements, B-Cell,Gene Rearrangements, B-Lymphocyte,Rearrangement, B-Cell Gene,Rearrangement, B-Lymphocyte Gene,Rearrangements, B-Cell Gene,Rearrangements, B-Lymphocyte Gene

Related Publications

Gary W Litman, and John P Cannon, and Jonathan P Rast
February 2016, Giornale italiano di dermatologia e venereologia : organo ufficiale, Societa italiana di dermatologia e sifilografia,
Gary W Litman, and John P Cannon, and Jonathan P Rast
January 2012, The open rheumatology journal,
Gary W Litman, and John P Cannon, and Jonathan P Rast
May 1994, The Western journal of medicine,
Gary W Litman, and John P Cannon, and Jonathan P Rast
March 2010, Mucosal immunology,
Gary W Litman, and John P Cannon, and Jonathan P Rast
October 2014, IEEE transactions on cybernetics,
Gary W Litman, and John P Cannon, and Jonathan P Rast
October 2007, The British journal of nutrition,
Gary W Litman, and John P Cannon, and Jonathan P Rast
December 2020, International journal of molecular sciences,
Gary W Litman, and John P Cannon, and Jonathan P Rast
May 2003, Springer seminars in immunopathology,
Gary W Litman, and John P Cannon, and Jonathan P Rast
September 1991, Neurochemical research,
Gary W Litman, and John P Cannon, and Jonathan P Rast
June 2020, Current oncology reports,
Copied contents to your clipboard!