New insights into mechanisms of immune glomerular injury. 1994

W G Couser
Division of Nephrology, University of Washington School of Medicine, Seattle 98195.

Although glomerular disease remains the most common cause of end-stage renal disease worldwide, major advances have been made recently in understanding the cellular and molecular mechanisms that mediate these disorders. The nephrotic syndrome in noninflammatory lesions such as minimal change or focal sclerosis and membranous nephropathy results from disorders of the glomerular epithelial cell that can be simulated in animal models by antibodies to various epithelial cell membrane epitopes. Clarification of how these antibodies affect epithelial cells to induce a loss of glomerular barrier function should substantially improve understanding of the pathogenesis of minimal change or focal sclerosis. In membranous nephropathy, proteinuria is mediated primarily by the C5b-9 complex through similar mechanisms that also involve glomerular epithelial cells as targets. Inflammatory glomerular lesions are induced by circulating inflammatory cells or proliferating resident glomerular cells. Understanding of how these cells induce tissue injury has also evolved considerably over the past decade. Neutrophil-induced disease involves leukocyte adhesion molecules in regulating neutrophil localization; proteases, oxidants, and myeloperoxidase in mediating injury; and platelets in augmenting these processes. The activated mesangial cell exhibits altered phenotype and proliferation with the release of oxidants and proteases. Mesangial cell proliferation may be initiated by basic fibroblast growth factor and is maintained by an autocrine mechanism involving platelet-derived growth factor. Transforming growth factor beta is important in the subsequent development of sclerosis.

UI MeSH Term Description Entries
D007249 Inflammation A pathological process characterized by injury or destruction of tissues caused by a variety of cytologic and chemical reactions. It is usually manifested by typical signs of pain, heat, redness, swelling, and loss of function. Innate Inflammatory Response,Inflammations,Inflammatory Response, Innate,Innate Inflammatory Responses
D007674 Kidney Diseases Pathological processes of the KIDNEY or its component tissues. Disease, Kidney,Diseases, Kidney,Kidney Disease
D007678 Kidney Glomerulus A cluster of convoluted capillaries beginning at each nephric tubule in the kidney and held together by connective tissue. Glomerulus, Kidney
D009402 Nephrosis, Lipoid A kidney disease with no or minimal histological glomerular changes on light microscopy and with no immune deposits. It is characterized by lipid accumulation in the epithelial cells of KIDNEY TUBULES and in the URINE. Patients usually show NEPHROTIC SYNDROME indicating the presence of PROTEINURIA with accompanying EDEMA. Glomerulonephritis, Minimal Change,Glomerulopathy, Minimal Change,Nephropathy, Minimal Change,Nephrotic Syndrome, Minimal Change,Idiopathic Minimal Change Nephrotic Syndrome,Minimal Change Disease,Minimal Change Glomerulopathy,Minimal Change Nephrotic Syndrome,Change Diseases, Minimal,Disease, Minimal Change,Diseases, Minimal Change,Glomerulonephritides, Minimal Change,Glomerulopathies, Minimal Change,Lipoid Nephroses,Lipoid Nephrosis,Minimal Change Diseases,Minimal Change Glomerulonephritides,Minimal Change Glomerulonephritis,Minimal Change Nephropathies,Minimal Change Nephropathy,Nephropathies, Minimal Change,Nephroses, Lipoid
D010982 Platelet-Derived Growth Factor Mitogenic peptide growth hormone carried in the alpha-granules of platelets. It is released when platelets adhere to traumatized tissues. Connective tissue cells near the traumatized region respond by initiating the process of replication. Platelet Derived Growth Factor,Factor, Platelet-Derived Growth,Growth Factor, Platelet-Derived
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015938 Complement Membrane Attack Complex A product of COMPLEMENT ACTIVATION cascade, regardless of the pathways, that forms transmembrane channels causing disruption of the target CELL MEMBRANE and cell lysis. It is formed by the sequential assembly of terminal complement components (COMPLEMENT C5B; COMPLEMENT C6; COMPLEMENT C7; COMPLEMENT C8; and COMPLEMENT C9) into the target membrane. The resultant C5b-8-poly-C9 is the "membrane attack complex" or MAC. Complement Complex C5b-9,Membrane Attack Complex,C 5b-9,C5b-8-poly-C9,C5b-9,Cytolytic Terminal Complement Complex,Terminal Complement Complex,C5b 8 poly C9,Complement Complex C5b 9,Complement Complex, Terminal,Complex, Terminal Complement

Related Publications

W G Couser
December 2009, Minerva urologica e nefrologica = The Italian journal of urology and nephrology,
W G Couser
May 2003, Springer seminars in immunopathology,
W G Couser
February 2016, Giornale italiano di dermatologia e venereologia : organo ufficiale, Societa italiana di dermatologia e sifilografia,
W G Couser
January 1984, Uremia investigation,
W G Couser
March 2022, International journal of molecular sciences,
W G Couser
October 2007, The British journal of nutrition,
Copied contents to your clipboard!