Sexually dimorphic responses of the brain norepinephrine system to stress and corticotropin-releasing factor. 2006

Andre L Curtis, and Thelma Bethea, and Rita J Valentino
Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA. curtisa@email.chop.edu

Stress-related psychiatric disorders are more prevalent in females than males, and this has been attributed to differences in stress sensitivity. As activation of the locus coeruleus (LC)-norepinephrine (NE) system is an important component of the stress response, this study compared LC responses to stress in female and male rats under different hormonal conditions in the halothane-anesthetized state. The mean basal LC discharge rate was similar between groups. However, the magnitude of LC activation elicited by hypotensive stress was substantially greater in females, regardless of hormonal status. The difference in stress sensitivity could be attributed to the differential postsynaptic sensitivity of LC neurons to corticotropin-releasing factor (CRF), which mediates LC activation by hypotension. CRF was 10-30 times more potent in activating LC neurons in female vs male rats. Interestingly, previous exposure to swim stress differentially regulated LC responses to CRF by sensitizing LC neurons of male, but not female, rats to CRF. The net effect of this was to abolish sex differences in LC sensitivity. Finally, CRF receptor (CRF-R) protein levels in the LC were greater in ovarectomized female vs male rats. This is the first study to demonstrate sex differences in the stress responsiveness of the brain noradrenergic system. Substantial sex differences were apparent in postsynaptic sensitivity to CRF and stress-induced regulation of postsynaptic sensitivity to CRF. These sex differences in the CRF regulation of the LC-NE system translate to a differential response to stress and may play a role in the increased vulnerability of females to stress-related psychiatric disorders.

UI MeSH Term Description Entries
D007022 Hypotension Abnormally low BLOOD PRESSURE that can result in inadequate blood flow to the brain and other vital organs. Common symptom is DIZZINESS but greater negative impacts on the body occur when there is prolonged depravation of oxygen and nutrients. Blood Pressure, Low,Hypotension, Vascular,Low Blood Pressure,Vascular Hypotension
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D007262 Infusions, Intravenous The long-term (minutes to hours) administration of a fluid into the vein through venipuncture, either by letting the fluid flow by gravity or by pumping it. Drip Infusions,Intravenous Drip,Intravenous Infusions,Drip Infusion,Drip, Intravenous,Infusion, Drip,Infusion, Intravenous,Infusions, Drip,Intravenous Infusion
D008125 Locus Coeruleus Bluish-colored region in the superior angle of the FOURTH VENTRICLE floor, corresponding to melanin-like pigmented nerve cells which lie lateral to the PERIAQUEDUCTAL GRAY. Locus Caeruleus Complex,Locus Caeruleus,Locus Ceruleus,Locus Ceruleus Complex,Locus Coeruleus Complex,Nucleus Pigmentosus Pontis,Caeruleus Complex, Locus,Complex, Locus Caeruleus,Complex, Locus Ceruleus,Complex, Locus Coeruleus,Pontis, Nucleus Pigmentosus
D008297 Male Males
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D011374 Progesterone The major progestational steroid that is secreted primarily by the CORPUS LUTEUM and the PLACENTA. Progesterone acts on the UTERUS, the MAMMARY GLANDS and the BRAIN. It is required in EMBRYO IMPLANTATION; PREGNANCY maintenance, and the development of mammary tissue for MILK production. Progesterone, converted from PREGNENOLONE, also serves as an intermediate in the biosynthesis of GONADAL STEROID HORMONES and adrenal CORTICOSTEROIDS. Pregnenedione,Progesterone, (13 alpha,17 alpha)-(+-)-Isomer,Progesterone, (17 alpha)-Isomer,Progesterone, (9 beta,10 alpha)-Isomer
D001923 Brain Chemistry Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states. Chemistry, Brain,Brain Chemistries,Chemistries, Brain
D003346 Corticotropin-Releasing Hormone A peptide of about 41 amino acids that stimulates the release of ADRENOCORTICOTROPIC HORMONE. CRH is synthesized by neurons in the PARAVENTRICULAR NUCLEUS of the HYPOTHALAMUS. After being released into the pituitary portal circulation, CRH stimulates the release of ACTH from the PITUITARY GLAND. CRH can also be synthesized in other tissues, such as PLACENTA; ADRENAL MEDULLA; and TESTIS. ACTH-Releasing Hormone,CRF-41,Corticotropin-Releasing Factor,Corticotropin-Releasing Hormone-41,ACTH-Releasing Factor,CRF (ACTH),Corticoliberin,Corticotropin-Releasing Factor-41,ACTH Releasing Factor,ACTH Releasing Hormone,Corticotropin Releasing Factor,Corticotropin Releasing Factor 41,Corticotropin Releasing Hormone,Corticotropin Releasing Hormone 41
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response

Related Publications

Andre L Curtis, and Thelma Bethea, and Rita J Valentino
September 2004, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Andre L Curtis, and Thelma Bethea, and Rita J Valentino
November 1999, Biological psychiatry,
Andre L Curtis, and Thelma Bethea, and Rita J Valentino
June 2004, Annals of the New York Academy of Sciences,
Andre L Curtis, and Thelma Bethea, and Rita J Valentino
February 2013, Molecular psychiatry,
Andre L Curtis, and Thelma Bethea, and Rita J Valentino
May 2010, Molecular pharmacology,
Andre L Curtis, and Thelma Bethea, and Rita J Valentino
June 2019, Neuroscience,
Andre L Curtis, and Thelma Bethea, and Rita J Valentino
October 1987, The American journal of physiology,
Andre L Curtis, and Thelma Bethea, and Rita J Valentino
January 1993, Ciba Foundation symposium,
Andre L Curtis, and Thelma Bethea, and Rita J Valentino
May 1989, Trends in pharmacological sciences,
Copied contents to your clipboard!