Effects of corticotropin-releasing factor receptor-1 antagonists on the brain stress system responses to morphine withdrawal. 2010

Javier Navarro-Zaragoza, and Cristina Núñez, and M Luisa Laorden, and M Victoria Milanés
Department of Pharmacology, University School of Medicine, University of Murcia, Murcia, Spain.

The role of stress in drug addiction is well established. The negative affective states of withdrawal most probably involve recruitment of brain stress neurocircuitry [e.g., induction of hypothalamo-pituitary-adrenocortical (HPA) axis, noradrenergic activity, and corticotropin-releasing factor (CRF) activity]. The present study investigated t$he role of CRF receptor-1 subtype (CRF1R) on the response of brain stress system to morphine withdrawal. The effects of naloxone-precipitated morphine withdrawal on noradrenaline (NA) turnover in the paraventricular nucleus (PVN), HPA axis activity, signs of withdrawal, and c-Fos expression were measured in rats pretreated with vehicle, CP-154526 [N-butyl-N-ethyl-2,5-dimethyl-7-(2,4,6-trimethylphenyl)pyrrolo[3,2-e]pyrimidin-4-amine], or antalarmin (selective CRF1R antagonists). Tyrosine hydroxylase-positive neurons expressing CRF1R were seen at the level of the nucleus tractus solitarius-A(2) cell group in both control and morphine-withdrawn rats. CP-154526 and antalarmin attenuated the increases in body weight loss and irritability that were seen during naloxone-induced morphine withdrawal. Pretreatment with CRF1R antagonists resulted in no significant modification of the increased NA turnover at PVN, plasma corticosterone levels, or c-Fos expression that was seen during naloxone-induced morphine withdrawal. However, blockade of CRF1R significantly reduced morphine withdrawal-induced increases in plasma adrenocorticotropin levels. These results suggest that the CRF1R subtype may be involved in the behavioral and somatic signs and in adrenocorticotropin release (partially) during morphine withdrawal. However, CRF1R activation may not contribute to the functional interaction between NA and CRF systems in mediating morphine withdrawal-activation of brain stress neurocircuitry.

UI MeSH Term Description Entries
D007457 Iodine Radioisotopes Unstable isotopes of iodine that decay or disintegrate emitting radiation. I atoms with atomic weights 117-139, except I 127, are radioactive iodine isotopes. Radioisotopes, Iodine
D008297 Male Males
D008734 Methoxyhydroxyphenylglycol Synthesized from endogenous epinephrine and norepinephrine in vivo. It is found in brain, blood, CSF, and urine, where its concentrations are used to measure catecholamine turnover. Hydroxymethoxyphenylglycol,MHPG,MOPEG,Vanylglycol,4-Hydroxy-3-methoxyphenylethylene Glycol,4-Hydroxy-3-methoxyphenylethyleneglycol,4-Hydroxy-3-methoxyphenylglycol,Methoxyhydroxyphenylglycol, (+)-Isomer,Methoxyhydroxyphenylglycol, (+-)-Isomer,Methoxyhydroxyphenylglycol, (-)-Isomer,4 Hydroxy 3 methoxyphenylethylene Glycol,4 Hydroxy 3 methoxyphenylethyleneglycol,4 Hydroxy 3 methoxyphenylglycol
D009020 Morphine The principal alkaloid in opium and the prototype opiate analgesic and narcotic. Morphine has widespread effects in the central nervous system and on smooth muscle. Morphine Sulfate,Duramorph,MS Contin,Morphia,Morphine Chloride,Morphine Sulfate (2:1), Anhydrous,Morphine Sulfate (2:1), Pentahydrate,Oramorph SR,SDZ 202-250,SDZ202-250,Chloride, Morphine,Contin, MS,SDZ 202 250,SDZ 202250,SDZ202 250,SDZ202250,Sulfate, Morphine
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D011863 Radioimmunoassay Classic quantitative assay for detection of antigen-antibody reactions using a radioactively labeled substance (radioligand) either directly or indirectly to measure the binding of the unlabeled substance to a specific antibody or other receptor system. Non-immunogenic substances (e.g., haptens) can be measured if coupled to larger carrier proteins (e.g., bovine gamma-globulin or human serum albumin) capable of inducing antibody formation. Radioimmunoassays
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D001933 Brain Stem The part of the brain that connects the CEREBRAL HEMISPHERES with the SPINAL CORD. It consists of the MESENCEPHALON; PONS; and MEDULLA OBLONGATA. Brainstem,Truncus Cerebri,Brain Stems,Brainstems,Cerebri, Truncus,Cerebrus, Truncus,Truncus Cerebrus
D003345 Corticosterone An adrenocortical steroid that has modest but significant activities as a mineralocorticoid and a glucocorticoid. (From Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th ed, p1437)
D000324 Adrenocorticotropic Hormone An anterior pituitary hormone that stimulates the ADRENAL CORTEX and its production of CORTICOSTEROIDS. ACTH is a 39-amino acid polypeptide of which the N-terminal 24-amino acid segment is identical in all species and contains the adrenocorticotrophic activity. Upon further tissue-specific processing, ACTH can yield ALPHA-MSH and corticotrophin-like intermediate lobe peptide (CLIP). ACTH,Adrenocorticotropin,Corticotropin,1-39 ACTH,ACTH (1-39),Adrenocorticotrophic Hormone,Corticotrophin,Corticotrophin (1-39),Corticotropin (1-39),Hormone, Adrenocorticotrophic,Hormone, Adrenocorticotropic

Related Publications

Javier Navarro-Zaragoza, and Cristina Núñez, and M Luisa Laorden, and M Victoria Milanés
November 2001, European journal of pharmacology,
Javier Navarro-Zaragoza, and Cristina Núñez, and M Luisa Laorden, and M Victoria Milanés
September 2004, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Javier Navarro-Zaragoza, and Cristina Núñez, and M Luisa Laorden, and M Victoria Milanés
July 2006, Expert opinion on therapeutic patents,
Javier Navarro-Zaragoza, and Cristina Núñez, and M Luisa Laorden, and M Victoria Milanés
February 2014, Toxicology and applied pharmacology,
Javier Navarro-Zaragoza, and Cristina Núñez, and M Luisa Laorden, and M Victoria Milanés
March 2006, Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology,
Javier Navarro-Zaragoza, and Cristina Núñez, and M Luisa Laorden, and M Victoria Milanés
January 2003, Progress in medicinal chemistry,
Javier Navarro-Zaragoza, and Cristina Núñez, and M Luisa Laorden, and M Victoria Milanés
August 2013, Expert opinion on therapeutic patents,
Javier Navarro-Zaragoza, and Cristina Núñez, and M Luisa Laorden, and M Victoria Milanés
January 2012, PloS one,
Javier Navarro-Zaragoza, and Cristina Núñez, and M Luisa Laorden, and M Victoria Milanés
January 2000, Journal of neurochemistry,
Javier Navarro-Zaragoza, and Cristina Núñez, and M Luisa Laorden, and M Victoria Milanés
January 2000, Physiology & behavior,
Copied contents to your clipboard!