Molecular analysis of sporulation in Streptomyces griseus. 1992

L A McCue, and J Kwak, and M J Babcock, and K E Kendrick
Department of Microbiology, Ohio State University, Columbus 43210.

Previous evidence suggested that orf1590 from Streptomyces griseus has the potential to encode two polypeptide products from temporally regulated nested open frames (orfs) and that the longer polypeptide may be a DNA-binding protein. We have developed a hypothetical model of the role of orf1590 in sporulation of S. griseus and have begun to test this model by determining the nucleotide sequence of the orf1590 counterpart from Streptomyces coelicolor. The conservation of the helix-turn-helix domain and the two potential translation start codons is consistent with our model. Continued analysis of bald mutants of S. griseus has indicated that several prematurely synthesize sporulation septa and spore walls. One of these nonsporulating strains appears to be a bldA mutant of S. griseus. Complementation analysis suggests that at least three genetic loci are involved in the correct timing of deposition of sporulation septa and wall thickening.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D013171 Spores, Bacterial Heat and stain resistant, metabolically inactive bodies formed within the vegetative cells of bacteria of the genera Bacillus and Clostridium. Bacterial Spores,Bacterial Spore,Spore, Bacterial
D013305 Streptomyces griseus An actinomycete from which the antibiotics STREPTOMYCIN, grisein, and CANDICIDIN are obtained.
D016366 Open Reading Frames A sequence of successive nucleotide triplets that are read as CODONS specifying AMINO ACIDS and begin with an INITIATOR CODON and end with a stop codon (CODON, TERMINATOR). ORFs,Protein Coding Region,Small Open Reading Frame,Small Open Reading Frames,sORF,Unassigned Reading Frame,Unassigned Reading Frames,Unidentified Reading Frame,Coding Region, Protein,Frame, Unidentified Reading,ORF,Open Reading Frame,Protein Coding Regions,Reading Frame, Open,Reading Frame, Unassigned,Reading Frame, Unidentified,Region, Protein Coding,Unidentified Reading Frames

Related Publications

L A McCue, and J Kwak, and M J Babcock, and K E Kendrick
July 1983, Journal of bacteriology,
L A McCue, and J Kwak, and M J Babcock, and K E Kendrick
June 1953, Chekhoslovatskaia biologiia,
L A McCue, and J Kwak, and M J Babcock, and K E Kendrick
June 1988, Journal of bacteriology,
L A McCue, and J Kwak, and M J Babcock, and K E Kendrick
January 1956, Medycyna doswiadczalna i mikrobiologia,
L A McCue, and J Kwak, and M J Babcock, and K E Kendrick
April 1998, Journal of bacteriology,
L A McCue, and J Kwak, and M J Babcock, and K E Kendrick
October 1990, Gene,
L A McCue, and J Kwak, and M J Babcock, and K E Kendrick
April 1997, Microbiology (Reading, England),
L A McCue, and J Kwak, and M J Babcock, and K E Kendrick
August 1996, Journal of bacteriology,
L A McCue, and J Kwak, and M J Babcock, and K E Kendrick
October 2000, Journal of bacteriology,
L A McCue, and J Kwak, and M J Babcock, and K E Kendrick
January 1981, Izvestiia Akademii nauk SSSR. Seriia biologicheskaia,
Copied contents to your clipboard!