Sporulation of Streptomyces griseus in submerged culture. 1983

K E Kendrick, and J C Ensign

A wild-type strain of Streptomyces griseus forms spores both on solid media (aerial spores) and in liquid culture (submerged spores). Both spore types are highly resistant to sonication, but only aerial spores are resistant to lysozyme digestion. Electron micrographs suggest that lysozyme sensitivity may result from the thinner walls of the submerged spores. Studies of the life cycle indicate that neither streptomycin excretion nor extracellular protease activity is required for sporulation: the analysis of mutants, however, suggests that antibiotic production may be correlated with the ability to sporulate. A method was devised to induce the rapid sporulation of S. griseus in a submerged culture. This method, which depends on nutrient deprivation, was used to determine that either ammonia or phosphate starvation can trigger sporulation and that the enzyme glutamine synthetase may be useful as a sporulation marker after phosphate deprivation.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D010447 Peptide Hydrolases Hydrolases that specifically cleave the peptide bonds found in PROTEINS and PEPTIDES. Examples of sub-subclasses for this group include EXOPEPTIDASES and ENDOPEPTIDASES. Peptidase,Peptidases,Peptide Hydrolase,Protease,Proteases,Proteinase,Proteinases,Proteolytic Enzyme,Proteolytic Enzymes,Esteroproteases,Enzyme, Proteolytic,Hydrolase, Peptide
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D005954 Glucosephosphate Dehydrogenase Glucose-6-Phosphate Dehydrogenase,Dehydrogenase, Glucose-6-Phosphate,Dehydrogenase, Glucosephosphate,Glucose 6 Phosphate Dehydrogenase
D005974 Glutamate-Ammonia Ligase An enzyme that catalyzes the conversion of ATP, L-glutamate, and NH3 to ADP, orthophosphate, and L-glutamine. It also acts more slowly on 4-methylene-L-glutamate. (From Enzyme Nomenclature, 1992) EC 6.3.1.2. Glutamine Synthetase,Glutamate Ammonia Ligase (ADP),Glutamate Ammonia Ligase,Ligase, Glutamate-Ammonia,Synthetase, Glutamine
D000332 Aerobiosis Life or metabolic reactions occurring in an environment containing oxygen. Aerobioses
D000469 Alkaline Phosphatase An enzyme that catalyzes the conversion of an orthophosphoric monoester and water to an alcohol and orthophosphate. EC 3.1.3.1.
D000693 Anaerobiosis The complete absence, or (loosely) the paucity, of gaseous or dissolved elemental oxygen in a given place or environment. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Anaerobic Metabolism,Anaerobic Metabolisms,Anaerobioses,Metabolism, Anaerobic,Metabolisms, Anaerobic
D013171 Spores, Bacterial Heat and stain resistant, metabolically inactive bodies formed within the vegetative cells of bacteria of the genera Bacillus and Clostridium. Bacterial Spores,Bacterial Spore,Spore, Bacterial

Related Publications

K E Kendrick, and J C Ensign
June 1953, Chekhoslovatskaia biologiia,
K E Kendrick, and J C Ensign
August 1992, Canadian journal of microbiology,
K E Kendrick, and J C Ensign
April 1955, Journal of general microbiology,
K E Kendrick, and J C Ensign
August 1994, Microbiology (Reading, England),
K E Kendrick, and J C Ensign
January 1970, Acta biologica Academiae Scientiarum Hungaricae,
K E Kendrick, and J C Ensign
June 1992, Gene,
K E Kendrick, and J C Ensign
March 1990, Journal of general microbiology,
K E Kendrick, and J C Ensign
January 1979, Acta biologica Academiae Scientiarum Hungaricae,
K E Kendrick, and J C Ensign
June 1988, Journal of bacteriology,
K E Kendrick, and J C Ensign
January 1956, Medycyna doswiadczalna i mikrobiologia,
Copied contents to your clipboard!