Constitutive expression of CD69 in interspecies T-cell hybrids and locus assignment to human chromosome 12. 1992

C Cambiaggi, and M T Scupoli, and T Cestari, and F Gerosa, and G Carra, and G Tridente, and R S Accolla
Istituto di Scienze Immunologiche, Facoltà di Medicina e Chirurgia, Università di Verona, Italy.

In this study we describe the generation and characterization of interspecies somatic cell hybrids between human activated mature T cells and mouse BW5147 thymoma cells. A preferential segregation of human chromosomes was observed in the hybrids. Phenotypic analysis of two hybrids and their clones demonstrated coexpression of CD4 and CD69 antigens in the same cells. Segregation analysis of an informative family of hybrids followed by molecular and karyotype studies clearly demonstrated that the locus encoding CD69 antigen mapped to human chromosome 12. Although the expression of CD69 antigen is an early event after T-lymphocyte activation and rapidly declines in absence of exogenous stimuli, in the hybrids described in this study the expression was constitutive, similarly to what was previously found in early thymocyte precursors and mature thymocytes. In this respect it was important to note that the behavior of the hybrids in culture strongly suggested a dominant influence of the thymus-derived mouse tumor cell genome in controlling the constitutive expression of human CD69. These hybrids may thus provide a system to study the genetic and molecular mechanisms controlling the expression and function of this activation antigen.

UI MeSH Term Description Entries
D007621 Karyotyping Mapping of the KARYOTYPE of a cell. Karyotype Analysis Methods,Analysis Method, Karyotype,Analysis Methods, Karyotype,Karyotype Analysis Method,Karyotypings,Method, Karyotype Analysis,Methods, Karyotype Analysis
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D002881 Chromosomes, Human, Pair 12 A specific pair of GROUP C CHROMOSOMES of the human chromosome classification. Chromosome 12
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006822 Hybrid Cells Any cell, other than a ZYGOTE, that contains elements (such as NUCLEI and CYTOPLASM) from two or more different cells, usually produced by artificial CELL FUSION. Somatic Cell Hybrids,Cell Hybrid, Somatic,Cell Hybrids, Somatic,Cell, Hybrid,Cells, Hybrid,Hybrid Cell,Hybrid, Somatic Cell,Hybrids, Somatic Cell,Somatic Cell Hybrid
D000945 Antigens, Differentiation, T-Lymphocyte Antigens expressed on the cell membrane of T-lymphocytes during differentiation, activation, and normal and neoplastic transformation. Their phenotypic characterization is important in differential diagnosis and studies of thymic ontogeny and T-cell function. Antigens, Differentiation, T-Cell,Differentiation Antigens, T-Cell,L3T4 Antigens,Leu Antigens, T-Lymphocyte,T-Cell Differentiation Antigens,T-Lymphocyte Differentiation Antigens,T6 Antigens,Antigens, Differentiation, T Lymphocyte,Differentiation Antigens, T Lymphocyte,Antigens, L3T4,Antigens, T-Cell Differentiation,Antigens, T-Lymphocyte Differentiation,Antigens, T-Lymphocyte Leu,Antigens, T6,Differentiation Antigens, T Cell,Differentiation Antigens, T-Lymphocyte,Leu Antigens, T Lymphocyte,T Cell Differentiation Antigens,T Lymphocyte Differentiation Antigens,T-Lymphocyte Leu Antigens
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte
D015703 Antigens, CD Differentiation antigens residing on mammalian leukocytes. CD stands for cluster of differentiation, which refers to groups of monoclonal antibodies that show similar reactivity with certain subpopulations of antigens of a particular lineage or differentiation stage. The subpopulations of antigens are also known by the same CD designation. CD Antigen,Cluster of Differentiation Antigen,Cluster of Differentiation Marker,Differentiation Antigens, Leukocyte, Human,Leukocyte Differentiation Antigens, Human,Cluster of Differentiation Antigens,Cluster of Differentiation Markers,Antigen Cluster, Differentiation,Antigen, CD,CD Antigens,Differentiation Antigen Cluster,Differentiation Marker Cluster,Marker Cluster, Differentiation
D015704 CD4 Antigens 55-kDa antigens found on HELPER-INDUCER T-LYMPHOCYTES and on a variety of other immune cell types. They are members of the immunoglobulin supergene family and are implicated as associative recognition elements in MAJOR HISTOCOMPATIBILITY COMPLEX class II-restricted immune responses. On T-lymphocytes they define the helper/inducer subset. T4 antigens also serve as INTERLEUKIN-15 receptors and bind to the HIV receptors, binding directly to the HIV ENVELOPE PROTEIN GP120. Antigens, CD4,CD4 Molecule,CD4 Receptor,CD4 Receptors,Receptors, CD4,T4 Antigens, T-Cell,CD4 Antigen,Receptors, Surface CD4,Surface CD4 Receptor,Antigen, CD4,Antigens, T-Cell T4,CD4 Receptor, Surface,CD4 Receptors, Surface,Receptor, CD4,Surface CD4 Receptors,T-Cell T4 Antigens,T4 Antigens, T Cell

Related Publications

C Cambiaggi, and M T Scupoli, and T Cestari, and F Gerosa, and G Carra, and G Tridente, and R S Accolla
December 1977, Human genetics,
C Cambiaggi, and M T Scupoli, and T Cestari, and F Gerosa, and G Carra, and G Tridente, and R S Accolla
July 1974, Annals of human genetics,
C Cambiaggi, and M T Scupoli, and T Cestari, and F Gerosa, and G Carra, and G Tridente, and R S Accolla
May 1984, Somatic cell and molecular genetics,
C Cambiaggi, and M T Scupoli, and T Cestari, and F Gerosa, and G Carra, and G Tridente, and R S Accolla
January 1978, Somatic cell genetics,
C Cambiaggi, and M T Scupoli, and T Cestari, and F Gerosa, and G Carra, and G Tridente, and R S Accolla
May 1984, Somatic cell and molecular genetics,
C Cambiaggi, and M T Scupoli, and T Cestari, and F Gerosa, and G Carra, and G Tridente, and R S Accolla
January 2001, Cytogenetics and cell genetics,
C Cambiaggi, and M T Scupoli, and T Cestari, and F Gerosa, and G Carra, and G Tridente, and R S Accolla
December 1994, Mammalian genome : official journal of the International Mammalian Genome Society,
C Cambiaggi, and M T Scupoli, and T Cestari, and F Gerosa, and G Carra, and G Tridente, and R S Accolla
April 1977, Experimental cell research,
C Cambiaggi, and M T Scupoli, and T Cestari, and F Gerosa, and G Carra, and G Tridente, and R S Accolla
September 1986, Somatic cell and molecular genetics,
C Cambiaggi, and M T Scupoli, and T Cestari, and F Gerosa, and G Carra, and G Tridente, and R S Accolla
January 2000, Cytogenetics and cell genetics,
Copied contents to your clipboard!