Vasoactive intestinal peptide modulates luteinizing hormone subunit gene expression in the anterior pituitary in female rat. 2005

Alina Gajewska, and Ewa Wolińska-Witort, and Kazimierz Kochman
Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Warsaw. a.gajewska@ifzz.pan.pl

The direct monosynaptic pathway which exists between vasoactive intestinal peptide (VIP) and GnRH neurons in the hypothalamic preoptic area provides a neuroanatomical background for the modulatory effects of VIP exerted on GnRH neurons activity. Though central microinjection of VIP revealed its involvement in the modulation of LH release pattern, there is a lack of data concerning a possible VIP influence on the alpha and LHbeta subunit gene expression in the pituitary gland. Using a model based on intracerebroventricular pulsatile peptide(s) microinjections (1 pulse/h [10 microl/5 min] over 5 h) the effect of exogenous VIP (5 nM dose) microinjection on subunits mRNA content in ovariectomized/oestrogen-pretreated rats was studied. Subsequently, to obtain data concerning the involvement of GnRH and VIP receptor(s) in the regulation of alpha and LHbeta subunit mRNA expression, OVX/estrogen-primed rats received a pulsatile microinjections of 5 nM VIP with 3 nM antide (GnRH receptor antagonist) or 5 nM VIP with 15 nM VIP 6-28 (VIP receptor antagonist). In this case, substances were given separately with a 30 min lag according to which each antagonist pulse preceded a VIP pulse. Northern-blot analysis revealed that VIP microinjection resulted in a decreased alpha and LHbeta mRNA content in pituitary gland and this effect was dependent on GnRH receptor activity. Moreover, obtained results indicated that centrally administered VIP might operate through its own receptor(s) because a receptor antagonist, VIP 6-28, blocked the inhibitory effect of VIP exerted on both LH subunit mRNA content and LH release.

UI MeSH Term Description Entries
D007986 Luteinizing Hormone A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Luteinizing hormone regulates steroid production by the interstitial cells of the TESTIS and the OVARY. The preovulatory LUTEINIZING HORMONE surge in females induces OVULATION, and subsequent LUTEINIZATION of the follicle. LUTEINIZING HORMONE consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH and FSH), but the beta subunit is unique and confers its biological specificity. ICSH (Interstitial Cell Stimulating Hormone),Interstitial Cell-Stimulating Hormone,LH (Luteinizing Hormone),Lutropin,Luteoziman,Luteozyman,Hormone, Interstitial Cell-Stimulating,Hormone, Luteinizing,Interstitial Cell Stimulating Hormone
D008845 Microinjections The injection of very small amounts of fluid, often with the aid of a microscope and microsyringes. Microinjection
D010052 Ovariectomy The surgical removal of one or both ovaries. Castration, Female,Oophorectomy,Bilateral Ovariectomy,Bilateral Ovariectomies,Castrations, Female,Female Castration,Female Castrations,Oophorectomies,Ovariectomies,Ovariectomies, Bilateral,Ovariectomy, Bilateral
D010903 Pituitary Gland, Anterior The anterior glandular lobe of the pituitary gland, also known as the adenohypophysis. It secretes the ADENOHYPOPHYSEAL HORMONES that regulate vital functions such as GROWTH; METABOLISM; and REPRODUCTION. Adenohypophysis,Anterior Lobe of Pituitary,Anterior Pituitary Gland,Lobus Anterior,Pars Distalis of Pituitary,Adenohypophyses,Anterior Pituitary Glands,Anterior, Lobus,Anteriors, Lobus,Lobus Anteriors,Pituitary Anterior Lobe,Pituitary Glands, Anterior,Pituitary Pars Distalis
D011388 Prolactin A lactogenic hormone secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). It is a polypeptide of approximately 23 kD. Besides its major action on lactation, in some species prolactin exerts effects on reproduction, maternal behavior, fat metabolism, immunomodulation and osmoregulation. Prolactin receptors are present in the mammary gland, hypothalamus, liver, ovary, testis, and prostate. Lactogenic Hormone, Pituitary,Mammotropic Hormone, Pituitary,Mammotropin,PRL (Prolactin),Hormone, Pituitary Lactogenic,Hormone, Pituitary Mammotropic,Pituitary Lactogenic Hormone,Pituitary Mammotropic Hormone
D011863 Radioimmunoassay Classic quantitative assay for detection of antigen-antibody reactions using a radioactively labeled substance (radioligand) either directly or indirectly to measure the binding of the unlabeled substance to a specific antibody or other receptor system. Non-immunogenic substances (e.g., haptens) can be measured if coupled to larger carrier proteins (e.g., bovine gamma-globulin or human serum albumin) capable of inducing antibody formation. Radioimmunoassays
D004347 Drug Interactions The action of a drug that may affect the activity, metabolism, or toxicity of another drug. Drug Interaction,Interaction, Drug,Interactions, Drug
D004967 Estrogens Compounds that interact with ESTROGEN RECEPTORS in target tissues to bring about the effects similar to those of ESTRADIOL. Estrogens stimulate the female reproductive organs, and the development of secondary female SEX CHARACTERISTICS. Estrogenic chemicals include natural, synthetic, steroidal, or non-steroidal compounds. Estrogen,Estrogen Effect,Estrogen Effects,Estrogen Receptor Agonists,Estrogenic Agents,Estrogenic Compounds,Estrogenic Effect,Estrogenic Effects,Agents, Estrogenic,Agonists, Estrogen Receptor,Compounds, Estrogenic,Effects, Estrogen,Effects, Estrogenic,Receptor Agonists, Estrogen
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Alina Gajewska, and Ewa Wolińska-Witort, and Kazimierz Kochman
March 1993, Molecular and cellular endocrinology,
Alina Gajewska, and Ewa Wolińska-Witort, and Kazimierz Kochman
November 1990, Neuroendocrinology,
Alina Gajewska, and Ewa Wolińska-Witort, and Kazimierz Kochman
October 1989, Endocrinology,
Alina Gajewska, and Ewa Wolińska-Witort, and Kazimierz Kochman
December 1988, Clinical endocrinology,
Alina Gajewska, and Ewa Wolińska-Witort, and Kazimierz Kochman
March 1995, Journal of neuroendocrinology,
Alina Gajewska, and Ewa Wolińska-Witort, and Kazimierz Kochman
August 1990, Brain research,
Alina Gajewska, and Ewa Wolińska-Witort, and Kazimierz Kochman
January 1993, Brain research. Molecular brain research,
Alina Gajewska, and Ewa Wolińska-Witort, and Kazimierz Kochman
March 1986, Asia-Oceania journal of obstetrics and gynaecology,
Copied contents to your clipboard!