Estradiol induces vasoactive intestinal peptide and prolactin gene expression in the rat anterior pituitary independently of plasma prolactin levels. 1995

M N Montagne, and M Dussaillant, and L J Chew, and A Berod, and S J Lamberts, and D A Carter, and W Rostene
INSERM U339, Hôpital Saint-Antoine, Paris, France.

It is well established that estrogens are potent stimulators of prolactin (PRL) secretion. It has also been demonstrated that estradiol (E2) can increase the expression and the anterior pituitary levels of the vasoactive intestinal peptide (VIP), a peptide which also acts as a potent PRL-releasing factor. It thus remained unknown whether the effects on pituitary VIP were due to E2 itself or to E2-induced hyperprolactinemia (HPRL). In order to test this hypothesis, various plasma PRL levels were induced in rats either with ectopic pituitary grafts, PRL secreting tumours or E2 implants, and VIP mRNA expression in the anterior pituitary was measured by in situ hybridization and Northern blot analyses. Whereas decreases in VIP mRNA can be observed in pituitaries of rats with pure HPRL, a 6-fold increase in VIP mRNA can be seen in E2-treated rats. E2 increased both 1.0 and 1.7 Kb VIP mRNA species. The presence of the graft in E2-treated rats significantly reduced the increase in VIPmRNA observed following E2. The direct stimulation by E2 of VIP mRNA expression was further demonstrated by the fact that statistical analysis of the data indicated that both E2 and graft were acting independently of each other, and that a new selective antiestrogen, RU 58668, almost totally blocked the effect of E2. Moreover, under similar experimental conditions, pituitary PRL mRNA levels were reduced in the graft group and a marked up-regulation was observed similarly in both E2 and in E2 rats bearing ectopic grafts.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010903 Pituitary Gland, Anterior The anterior glandular lobe of the pituitary gland, also known as the adenohypophysis. It secretes the ADENOHYPOPHYSEAL HORMONES that regulate vital functions such as GROWTH; METABOLISM; and REPRODUCTION. Adenohypophysis,Anterior Lobe of Pituitary,Anterior Pituitary Gland,Lobus Anterior,Pars Distalis of Pituitary,Adenohypophyses,Anterior Pituitary Glands,Anterior, Lobus,Anteriors, Lobus,Lobus Anteriors,Pituitary Anterior Lobe,Pituitary Glands, Anterior,Pituitary Pars Distalis
D011388 Prolactin A lactogenic hormone secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). It is a polypeptide of approximately 23 kD. Besides its major action on lactation, in some species prolactin exerts effects on reproduction, maternal behavior, fat metabolism, immunomodulation and osmoregulation. Prolactin receptors are present in the mammary gland, hypothalamus, liver, ovary, testis, and prostate. Lactogenic Hormone, Pituitary,Mammotropic Hormone, Pituitary,Mammotropin,PRL (Prolactin),Hormone, Pituitary Lactogenic,Hormone, Pituitary Mammotropic,Pituitary Lactogenic Hormone,Pituitary Mammotropic Hormone
D011915 Rats, Inbred BUF An inbred strain of rat that is used for cancer research, particularly the study of CARCINOGENESIS Rats, Inbred Buffalo,Rats, BUF,BUF Rat,BUF Rat, Inbred,BUF Rats,BUF Rats, Inbred,Buffalo Rats, Inbred,Inbred BUF Rat,Inbred BUF Rats,Inbred Buffalo Rats,Rat, BUF,Rat, Inbred BUF
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot
D005246 Feedback A mechanism of communication within a system in that the input signal generates an output response which returns to influence the continued activity or productivity of that system. Feedbacks
D005260 Female Females
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

M N Montagne, and M Dussaillant, and L J Chew, and A Berod, and S J Lamberts, and D A Carter, and W Rostene
March 1993, Molecular and cellular endocrinology,
M N Montagne, and M Dussaillant, and L J Chew, and A Berod, and S J Lamberts, and D A Carter, and W Rostene
November 1994, Molecular and cellular endocrinology,
M N Montagne, and M Dussaillant, and L J Chew, and A Berod, and S J Lamberts, and D A Carter, and W Rostene
October 1982, Neuroscience letters,
M N Montagne, and M Dussaillant, and L J Chew, and A Berod, and S J Lamberts, and D A Carter, and W Rostene
November 1990, Neuroendocrinology,
M N Montagne, and M Dussaillant, and L J Chew, and A Berod, and S J Lamberts, and D A Carter, and W Rostene
October 2005, Brain research bulletin,
M N Montagne, and M Dussaillant, and L J Chew, and A Berod, and S J Lamberts, and D A Carter, and W Rostene
November 1989, Neuroendocrinology,
M N Montagne, and M Dussaillant, and L J Chew, and A Berod, and S J Lamberts, and D A Carter, and W Rostene
November 1991, Journal of endocrinological investigation,
M N Montagne, and M Dussaillant, and L J Chew, and A Berod, and S J Lamberts, and D A Carter, and W Rostene
December 1988, Clinical endocrinology,
M N Montagne, and M Dussaillant, and L J Chew, and A Berod, and S J Lamberts, and D A Carter, and W Rostene
October 1989, Endocrinology,
M N Montagne, and M Dussaillant, and L J Chew, and A Berod, and S J Lamberts, and D A Carter, and W Rostene
February 1997, The Journal of endocrinology,
Copied contents to your clipboard!