Physiological hypoxia promotes survival of cultured cortical neurons. 2005

Dongdong Li, and Jeremy D Marks, and Paul T Schumacker, and Regina M Young, and James R Brorson
Department of Neurology MC2030, The University of Chicago, 5841S Maryland Avenue, Chicago, IL 60637, USA.

Physiological oxygen (O2) tensions in brain tissues vary widely, from approximately 5 to 40 Torr (1-6%), encompassing levels of moderate hypoxia that have often been considered neurotoxic in vitro. The effects of such hypoxia were examined in embryonic murine cortical neurons cultured continuously from plating in an atmosphere of 1% O2. Remarkably, cortical neurons thrived in 1% O2, with survival at 7-14 days significantly greater than that of neurons cultured in ambient conditions (20% O2). Immunostaining for microtubule-associated protein-2 (MAP-2) and NeuN confirmed the neuronal identity of surviving cells, and demonstrated robust development of dendritic structures and MAP-2 expression in hypoxia. Survival of neurons in 20% O2 could be promoted by transfer of medium conditioned by neurons in 1% O2, or by pharmacological induction of hypoxia-inducible factor-1alpha (HIF-1alpha), suggesting a possible role for secreted factors under transcriptional regulation by HIF-1 in the trophic effects of hypoxia. Vascular endothelial growth factor (VEGF), a factor regulated by HIF-1, was strongly stimulated in neurons cultured in 1% O2. Treatment of neurons with exogenous VEGF partially improved survival in 20% O2, and inhibitors of VEGF action reduced survival of neurons in 1% O2. These data point to the dynamic role played by hypoxia, associated with HIF-1 up-regulation, in promoting survival of cortical neurons, in part through stimulation of VEGF expression and release.

UI MeSH Term Description Entries
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008869 Microtubule-Associated Proteins High molecular weight proteins found in the MICROTUBULES of the cytoskeletal system. Under certain conditions they are required for TUBULIN assembly into the microtubules and stabilize the assembled microtubules. Ensconsin,Epithelial MAP, 115 kDa,Epithelial Microtubule-Associate Protein, 115 kDa,MAP4,Microtubule Associated Protein,Microtubule Associated Protein 4,Microtubule Associated Protein 7,Microtubule-Associated Protein,Microtubule-Associated Protein 7,E-MAP-115,MAP1 Microtubule-Associated Protein,MAP2 Microtubule-Associated Protein,MAP3 Microtubule-Associated Protein,Microtubule Associated Proteins,Microtubule-Associated Protein 1,Microtubule-Associated Protein 2,Microtubule-Associated Protein 3,7, Microtubule-Associated Protein,Associated Protein, Microtubule,E MAP 115,Epithelial Microtubule Associate Protein, 115 kDa,MAP1 Microtubule Associated Protein,MAP2 Microtubule Associated Protein,MAP3 Microtubule Associated Protein,Microtubule Associated Protein 1,Microtubule Associated Protein 2,Microtubule Associated Protein 3,Microtubule-Associated Protein, MAP1,Microtubule-Associated Protein, MAP2,Microtubule-Associated Protein, MAP3,Protein 7, Microtubule-Associated,Protein, Microtubule Associated,Protein, Microtubule-Associated
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015153 Blotting, Western Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes. Immunoblotting, Western,Western Blotting,Western Immunoblotting,Blot, Western,Immunoblot, Western,Western Blot,Western Immunoblot,Blots, Western,Blottings, Western,Immunoblots, Western,Immunoblottings, Western,Western Blots,Western Blottings,Western Immunoblots,Western Immunoblottings
D015687 Cell Hypoxia A condition of decreased oxygen content at the cellular level. Anoxia, Cellular,Cell Anoxia,Hypoxia, Cellular,Anoxia, Cell,Anoxias, Cell,Anoxias, Cellular,Cell Anoxias,Cell Hypoxias,Cellular Anoxia,Cellular Anoxias,Cellular Hypoxia,Cellular Hypoxias,Hypoxia, Cell,Hypoxias, Cell,Hypoxias, Cellular

Related Publications

Dongdong Li, and Jeremy D Marks, and Paul T Schumacker, and Regina M Young, and James R Brorson
February 2010, Neuroscience letters,
Dongdong Li, and Jeremy D Marks, and Paul T Schumacker, and Regina M Young, and James R Brorson
January 2018, Cannabis and cannabinoid research,
Dongdong Li, and Jeremy D Marks, and Paul T Schumacker, and Regina M Young, and James R Brorson
February 2012, Neuroscience letters,
Dongdong Li, and Jeremy D Marks, and Paul T Schumacker, and Regina M Young, and James R Brorson
January 2017, Frontiers in cellular neuroscience,
Dongdong Li, and Jeremy D Marks, and Paul T Schumacker, and Regina M Young, and James R Brorson
April 1991, Developmental biology,
Dongdong Li, and Jeremy D Marks, and Paul T Schumacker, and Regina M Young, and James R Brorson
March 1993, Brain research,
Dongdong Li, and Jeremy D Marks, and Paul T Schumacker, and Regina M Young, and James R Brorson
October 2002, The International journal of neuroscience,
Dongdong Li, and Jeremy D Marks, and Paul T Schumacker, and Regina M Young, and James R Brorson
November 1997, Experimental neurology,
Dongdong Li, and Jeremy D Marks, and Paul T Schumacker, and Regina M Young, and James R Brorson
September 2008, Brain research,
Dongdong Li, and Jeremy D Marks, and Paul T Schumacker, and Regina M Young, and James R Brorson
May 2012, Neural regeneration research,
Copied contents to your clipboard!