Gamma-interferon promotes differentiation of cultured cortical and hippocampal neurons. 1991

M E Barish, and N B Mansdorf, and S S Raissdana
Department of Physiology and Biophysics, College of Medicine, University of California, Irvine 92717.

Clinical and experimental evidence suggests that the development of the brain may be modulated by soluble growth factors traditionally associated with cells of the immune system. As part of an investigation into agents modulating early neural differentiation, we examined the effects of the lymphokine gamma-interferon (IFN-gamma) on the development of cultured cortical and hippocampal neurons from embryonic rats and mice. We report here that recombinant IFN-gamma, at concentrations of 0.2-10 U/ml (50-2500 pg/ml, 3-150 pM), affects the differentiation of embryonic central neurons. IFN-gamma increased the number of cells expressing neurofilament (NF) protein, the growth of primary and secondary neurites on NF-expressing somas, and the extent of cell aggregation observed in culture. IFN-gamma-induced increases in the numbers of NF-positive cells were seen in the virtual absence of differentiated astrocytes, and in mixed neuron-glia cultures. Our results thus indicate that at physiologically relevant concentrations IFN-gamma acts, either directly on neurons and their precursor cells and/or indirectly via nonneuronal cell stimulation, to promote the differentiation of immature neurons.

UI MeSH Term Description Entries
D007371 Interferon-gamma The major interferon produced by mitogenically or antigenically stimulated LYMPHOCYTES. It is structurally different from TYPE I INTERFERON and its major activity is immunoregulation. It has been implicated in the expression of CLASS II HISTOCOMPATIBILITY ANTIGENS in cells that do not normally produce them, leading to AUTOIMMUNE DISEASES. Interferon Type II,Interferon, Immune,gamma-Interferon,Interferon, gamma,Type II Interferon,Immune Interferon,Interferon, Type II
D007381 Intermediate Filament Proteins Filaments 7-11 nm in diameter found in the cytoplasm of all cells. Many specific proteins belong to this group, e.g., desmin, vimentin, prekeratin, decamin, skeletin, neurofilin, neurofilament protein, and glial fibrillary acid protein. Fibroblast Intermediate Filament Proteins,Filament Proteins, Intermediate,Proteins, Intermediate Filament
D007382 Intermediate Filaments Cytoplasmic filaments intermediate in diameter (about 10 nanometers) between the microfilaments and the microtubules. They may be composed of any of a number of different proteins and form a ring around the cell nucleus. Tonofilaments,Neurofilaments,Filament, Intermediate,Filaments, Intermediate,Intermediate Filament,Neurofilament,Tonofilament
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002449 Cell Aggregation The phenomenon by which dissociated cells intermixed in vitro tend to group themselves with cells of their own type. Aggregation, Cell,Aggregations, Cell,Cell Aggregations
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D006133 Growth Substances Signal molecules that are involved in the control of cell growth and differentiation. Mitogens, Endogenous,Endogenous Mitogens

Related Publications

M E Barish, and N B Mansdorf, and S S Raissdana
September 2005, The European journal of neuroscience,
M E Barish, and N B Mansdorf, and S S Raissdana
April 2006, The Journal of comparative neurology,
M E Barish, and N B Mansdorf, and S S Raissdana
June 2012, Experimental neurobiology,
M E Barish, and N B Mansdorf, and S S Raissdana
June 2004, The European journal of neuroscience,
M E Barish, and N B Mansdorf, and S S Raissdana
January 2003, Methods in cell biology,
M E Barish, and N B Mansdorf, and S S Raissdana
June 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience,
M E Barish, and N B Mansdorf, and S S Raissdana
December 1991, Experimental cell research,
M E Barish, and N B Mansdorf, and S S Raissdana
December 2003, Journal of neurochemistry,
M E Barish, and N B Mansdorf, and S S Raissdana
May 2012, Neural regeneration research,
Copied contents to your clipboard!