Opioid elevation of intracellular free calcium: possible mechanisms and physiological relevance. 2006

Damien S K Samways, and Graeme Henderson
Department of Pharmacological and Physiological Science, Health Science Center, School of Medicine, Saint Louis University, MO, USA. samwayds@slu.edu

Opioid receptors are seven transmembrane domain Gi/G0 protein-coupled receptors, the activation of which stimulates a variety of intracellular signalling mechanisms including activation of inwardly rectifying potassium channels, and inhibition of both voltage-operated N-type Ca2+ channels and adenylyl cyclase activity. It is now apparent that like many other Gi/G0-coupled receptors, opioid receptor activation can significantly elevate intracellular free Ca2+ ([Ca2+]i), although the mechanism underlying this phenomenon is not well understood. In some cases opioid receptor activation alone appears to elevate [Ca2+]i, but in many cases it requires concomitant activation of Gq-coupled receptors, which themselves stimulate Ca2+ release from intracellular stores via the inositol phosphate pathway. Given the number of Ca2+-sensitive processes known to occur in cells, there are therefore a myriad of situations in which opioid receptor-mediated elevations of [Ca2+](i) may be important. Here, we review the literature documenting opioid receptor-mediated elevations of [Ca2+]i, discussing both the possible mechanisms underlying this phenomenon and its potential physiological relevance.

UI MeSH Term Description Entries
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D011957 Receptors, Opioid Cell membrane proteins that bind opioids and trigger intracellular changes which influence the behavior of cells. The endogenous ligands for opioid receptors in mammals include three families of peptides, the enkephalins, endorphins, and dynorphins. The receptor classes include mu, delta, and kappa receptors. Sigma receptors bind several psychoactive substances, including certain opioids, but their endogenous ligands are not known. Endorphin Receptors,Enkephalin Receptors,Narcotic Receptors,Opioid Receptors,Receptors, Endorphin,Receptors, Enkephalin,Receptors, Narcotic,Receptors, Opiate,Endorphin Receptor,Enkephalin Receptor,Normorphine Receptors,Opiate Receptor,Opiate Receptors,Opioid Receptor,Receptors, Normorphine,Receptors, beta-Endorphin,beta-Endorphin Receptor,Receptor, Endorphin,Receptor, Enkephalin,Receptor, Opiate,Receptor, Opioid,Receptor, beta-Endorphin,Receptors, beta Endorphin,beta Endorphin Receptor,beta-Endorphin Receptors
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D020013 Calcium Signaling Signal transduction mechanisms whereby calcium mobilization (from outside the cell or from intracellular storage pools) to the cytoplasm is triggered by external stimuli. Calcium signals are often seen to propagate as waves, oscillations, spikes, sparks, or puffs. The calcium acts as an intracellular messenger by activating calcium-responsive proteins. Calcium Oscillations,Calcium Waves,Calcium Puffs,Calcium Sparks,Calcium Spikes,Calcium Oscillation,Calcium Puff,Calcium Signalings,Calcium Spark,Calcium Spike,Calcium Wave,Oscillation, Calcium,Oscillations, Calcium,Puff, Calcium,Puffs, Calcium,Signaling, Calcium,Signalings, Calcium,Spark, Calcium,Sparks, Calcium,Spike, Calcium,Spikes, Calcium,Wave, Calcium,Waves, Calcium

Related Publications

Damien S K Samways, and Graeme Henderson
June 2000, Zhongguo yi xue ke xue yuan xue bao. Acta Academiae Medicinae Sinicae,
Damien S K Samways, and Graeme Henderson
December 2020, Pflugers Archiv : European journal of physiology,
Damien S K Samways, and Graeme Henderson
May 1997, Biophysical chemistry,
Damien S K Samways, and Graeme Henderson
January 1986, Ciba Foundation symposium,
Damien S K Samways, and Graeme Henderson
July 2010, Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica,
Damien S K Samways, and Graeme Henderson
October 1996, Shock (Augusta, Ga.),
Damien S K Samways, and Graeme Henderson
May 1996, Journal of neuroscience research,
Damien S K Samways, and Graeme Henderson
August 1987, Revista medica de Chile,
Damien S K Samways, and Graeme Henderson
October 1993, International journal of radiation biology,
Damien S K Samways, and Graeme Henderson
March 1990, Biochemical and biophysical research communications,
Copied contents to your clipboard!