Role of protein kinase C in T-cell antigen receptor regulation of p21ras: evidence that two p21ras regulatory pathways coexist in T cells. 1992

M Izquierdo, and J Downward, and J D Graves, and D A Cantrell
Lymphocyte Activation Laboratory, I.C.R.F. Laboratories, London, United Kingdom.

T-lymphocyte activation via the antigen receptor complex (TCR) results in accumulation of p21ras in the active GTP-bound state. Stimulation of protein kinase C (PKC) can also activate p21ras, and it has been proposed that the TCR effect on p21ras occurs as a consequence of TCR regulation of PKC. To test the role of PKC in TCR regulation of p21ras, a permeabilized cell system was used to examine TCR regulation of p21ras under conditions in which TCR activation of PKC was blocked, first by using a PKC pseudosubstrate peptide inhibitor and second by using ionic conditions that prevent phosphatidyl inositol hydrolysis and hence diacylglycerol production and PKC stimulation. The data show that TCR-induced p21ras activation is not mediated exclusively by PKC. Thus, in the absence of PKC stimulation, the TCR was still able to induce accumulation of p21ras-GTP complexes, and this stimulation correlated with an inactivation of p21ras GTPase-activating proteins. The protein tyrosine kinase inhibitor herbimycin could prevent the non-PKC-mediated, TCR-induced stimulation of p21ras. These data indicate that two mechanisms for p21ras regulation coexist in T cells: one PKC mediated and one not. The TCR can apparently couple to p21ras via a non-PKC-controlled route that may involve tyrosine kinases.

UI MeSH Term Description Entries
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010716 Phosphatidylinositols Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to the hexahydroxy alcohol, myo-inositol. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid, myo-inositol, and 2 moles of fatty acids. Inositide Phospholipid,Inositol Phosphoglyceride,Inositol Phosphoglycerides,Inositol Phospholipid,Phosphoinositide,Phosphoinositides,PtdIns,Inositide Phospholipids,Inositol Phospholipids,Phosphatidyl Inositol,Phosphatidylinositol,Inositol, Phosphatidyl,Phosphoglyceride, Inositol,Phosphoglycerides, Inositol,Phospholipid, Inositide,Phospholipid, Inositol,Phospholipids, Inositide,Phospholipids, Inositol
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D011809 Quinones Hydrocarbon rings which contain two ketone moieties in any position. They can be substituted in any position except at the ketone groups.
D011946 Receptors, Antigen Molecules on the surface of B- and T-lymphocytes that recognize and combine with specific antigens. Antigen Receptors,Antigen Receptor,Receptor, Antigen
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D004075 Diglycerides Glycerides composed of two fatty acids esterified to the trihydric alcohol GLYCEROL. There are two possible forms that exist: 1,2-diacylglycerols and 1,3-diacylglycerols. Diacylglycerol,Diacylglycerols
D006160 Guanosine Triphosphate Guanosine 5'-(tetrahydrogen triphosphate). A guanine nucleotide containing three phosphate groups esterified to the sugar moiety. GTP,Triphosphate, Guanosine

Related Publications

M Izquierdo, and J Downward, and J D Graves, and D A Cantrell
May 1993, Journal of immunology (Baltimore, Md. : 1950),
M Izquierdo, and J Downward, and J D Graves, and D A Cantrell
October 1994, European journal of immunology,
M Izquierdo, and J Downward, and J D Graves, and D A Cantrell
September 1987, The Journal of biological chemistry,
M Izquierdo, and J Downward, and J D Graves, and D A Cantrell
January 1994, Chemical immunology,
M Izquierdo, and J Downward, and J D Graves, and D A Cantrell
July 1993, The Biochemical journal,
M Izquierdo, and J Downward, and J D Graves, and D A Cantrell
October 1994, The Biochemical journal,
M Izquierdo, and J Downward, and J D Graves, and D A Cantrell
October 1993, The Journal of experimental medicine,
M Izquierdo, and J Downward, and J D Graves, and D A Cantrell
November 1986, Immunology today,
M Izquierdo, and J Downward, and J D Graves, and D A Cantrell
August 1997, Molecular and cellular biology,
M Izquierdo, and J Downward, and J D Graves, and D A Cantrell
November 1992, The Journal of biological chemistry,
Copied contents to your clipboard!