Regulation of T-cell-receptor-stimulated bivalent-cation entry in Jurkat E6 cells: role of protein kinase C. 1994

L A Conroy, and J E Merritt, and T J Hallam
Roche Research Centre, Welwyn Garden City, U.K.

Stimulation of Jurkat E6 cells with anti-CD3 antibody results in a characteristic rise in [Ca2+]i which is due to both the release of Ca2+ from intracellular stores and the entry of external Ca2+. Individual components of the [Ca2+]i increase were investigated by measuring intracellular Ca2+ release in the absence of external Ca2+ and determining influx of bivalent cations by following the entry of Mn2+. The increase in [Ca2+]i induced by anti-CD3 antibody in the presence or absence of extracellular Ca2+ could be inhibited by the non-selective kinase inhibitor staurosporine, which also inhibits anti-CD3-stimulated phospholipase C activity. Staurosporine also inhibits the influx of bivalent cations induced by anti-CD3 antibody, but not that induced by depletion of intracellular Ca2+ stores using thapsigargin. The effect of staurosporine was compared with that of Ro 31-8425, a potent and selective inhibitor of protein kinase C (PKC). Ro 31-8425, at concentrations up to 10 microM, has no inhibitory effect on the anti-CD3 antibody-induced [Ca2+]i increase or phospholipase C activity. These studies are consistent with the concept that augmentation of [Ca2+]i by stimulated T-cell receptors requires activation of a kinase, probably a tyrosine kinase such as p56lck, ZAP-70 or p59fyn, and is independent of PKC. Phorbol esters inhibit the anti-CD3-stimulated [Ca2+]i increase and phospholipase C activity, showing that this can be negatively regulated by PKC. A small potentiation of the anti-CD3 antibody-induced [Ca2+]i rise in the presence of extracellular Ca2+ was detected in the presence of Ro 31-8425; this suggests that T-cell-receptor ligation can also limit the increase in [Ca2+]i via PKC activation.

UI MeSH Term Description Entries
D007211 Indoles Benzopyrroles with the nitrogen at the number one carbon adjacent to the benzyl portion, in contrast to ISOINDOLES which have the nitrogen away from the six-membered ring.
D008301 Maleimides Derivatives of maleimide (the structural formula H2C2(CO)2NH) containing a pyrroledione ring where the hydrogen atom of the NH group is replaced with aliphatic or aromatic groups.
D008345 Manganese A trace element with atomic symbol Mn, atomic number 25, and atomic weight 54.94. It is concentrated in cell mitochondria, mostly in the pituitary gland, liver, pancreas, kidney, and bone, influences the synthesis of mucopolysaccharides, stimulates hepatic synthesis of cholesterol and fatty acids, and is a cofactor in many enzymes, including arginase and alkaline phosphatase in the liver. (From AMA Drug Evaluations Annual 1992, p2035)
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D011948 Receptors, Antigen, T-Cell Molecules on the surface of T-lymphocytes that recognize and combine with antigens. The receptors are non-covalently associated with a complex of several polypeptides collectively called CD3 antigens (CD3 COMPLEX). Recognition of foreign antigen and the major histocompatibility complex is accomplished by a single heterodimeric antigen-receptor structure, composed of either alpha-beta (RECEPTORS, ANTIGEN, T-CELL, ALPHA-BETA) or gamma-delta (RECEPTORS, ANTIGEN, T-CELL, GAMMA-DELTA) chains. Antigen Receptors, T-Cell,T-Cell Receptors,Receptors, T-Cell Antigen,T-Cell Antigen Receptor,T-Cell Receptor,Antigen Receptor, T-Cell,Antigen Receptors, T Cell,Receptor, T-Cell,Receptor, T-Cell Antigen,Receptors, T Cell Antigen,Receptors, T-Cell,T Cell Antigen Receptor,T Cell Receptor,T Cell Receptors,T-Cell Antigen Receptors
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D000470 Alkaloids Organic nitrogenous bases. Many alkaloids of medical importance occur in the animal and vegetable kingdoms, and some have been synthesized. (Grant & Hackh's Chemical Dictionary, 5th ed) Alkaloid,Plant Alkaloid,Plant Alkaloids,Alkaloid, Plant,Alkaloids, Plant
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal

Related Publications

L A Conroy, and J E Merritt, and T J Hallam
March 1993, Journal of immunology (Baltimore, Md. : 1950),
L A Conroy, and J E Merritt, and T J Hallam
June 1997, The Journal of biological chemistry,
L A Conroy, and J E Merritt, and T J Hallam
December 1997, Japanese circulation journal,
L A Conroy, and J E Merritt, and T J Hallam
June 1998, Cell calcium,
L A Conroy, and J E Merritt, and T J Hallam
November 1986, Immunology today,
L A Conroy, and J E Merritt, and T J Hallam
November 1993, Biochemical Society transactions,
L A Conroy, and J E Merritt, and T J Hallam
April 1990, The Biochemical journal,
L A Conroy, and J E Merritt, and T J Hallam
January 1987, Haematology and blood transfusion,
L A Conroy, and J E Merritt, and T J Hallam
October 1994, European journal of immunology,
Copied contents to your clipboard!