Role of external Ca2+ and K+ in gating of cardiac delayed rectifier K+ currents. 1992

M C Sanguinetti, and N K Jurkiewicz
Department of Pharmacology, Merck Sharp & Dohme Research Laboratories, West Point, PA 19486.

We sought to determine whether extracellular Ca2+ (Ca2+e) and K+ (K+e) play essential roles in the normal functioning of cardiac K+ channels. Reports by others have shown that removal of Ca2+e and K+e alters the gating properties of neural delayed rectifier (IK) and A-type K+ currents, resulting in a loss of normal cation selectivity and voltage-dependent gating. We found that removal of Ca2+e and K+e from the solution bathing guinea pig ventricular myocytes often induced a leak conductance, but did not affect the ionic selectivity or time-dependent activation and deactivation properties of IK. The effect of [K+]e on the magnitude of the two components of cardiac IK was also examined. IK in guinea pig myocytes is comprised of two distinct types of currents: IKr (rapidly activating, rectifying) and IKs (slowly activating). The differential effect of Ca2+e on the two components of IK (previously shown to shift the voltage dependence of activation of the two currents in opposite directions) was exploited to determine the role of K+e on the magnitude of IKs and IKr. Lowering [K+]e from 4 to 0 mM increased IKs, as expected from the change in driving force for K+, but decreased IKr. The differential effect of [K+]e on the two components of cardiac IK may explain the reported discrepancies regarding modulation of cardiac IK conductance by this cation.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005110 Extracellular Space Interstitial space between cells, occupied by INTERSTITIAL FLUID as well as amorphous and fibrous substances. For organisms with a CELL WALL, the extracellular space includes everything outside of the CELL MEMBRANE including the PERIPLASM and the cell wall. Intercellular Space,Extracellular Spaces,Intercellular Spaces,Space, Extracellular,Space, Intercellular,Spaces, Extracellular,Spaces, Intercellular
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015221 Potassium Channels Cell membrane glycoproteins that are selectively permeable to potassium ions. At least eight major groups of K channels exist and they are made up of dozens of different subunits. Ion Channels, Potassium,Ion Channel, Potassium,Potassium Channel,Potassium Ion Channels,Channel, Potassium,Channel, Potassium Ion,Channels, Potassium,Channels, Potassium Ion,Potassium Ion Channel
D015640 Ion Channel Gating The opening and closing of ion channels due to a stimulus. The stimulus can be a change in membrane potential (voltage-gated), drugs or chemical transmitters (ligand-gated), or a mechanical deformation. Gating is thought to involve conformational changes of the ion channel which alters selective permeability. Gating, Ion Channel,Gatings, Ion Channel,Ion Channel Gatings

Related Publications

M C Sanguinetti, and N K Jurkiewicz
January 2010, Journal of molecular and cellular cardiology,
M C Sanguinetti, and N K Jurkiewicz
May 1993, Proceedings of the National Academy of Sciences of the United States of America,
M C Sanguinetti, and N K Jurkiewicz
November 2003, British journal of pharmacology,
M C Sanguinetti, and N K Jurkiewicz
March 2000, Circulation,
M C Sanguinetti, and N K Jurkiewicz
April 1992, Biophysical journal,
M C Sanguinetti, and N K Jurkiewicz
August 1990, The Journal of pharmacology and experimental therapeutics,
M C Sanguinetti, and N K Jurkiewicz
July 1999, Pflugers Archiv : European journal of physiology,
M C Sanguinetti, and N K Jurkiewicz
May 2014, Molecular medicine reports,
Copied contents to your clipboard!