Tedisamil blocks the transient and delayed rectifier K+ currents in mammalian cardiac and glial cells. 1990

I D Dukes, and L Cleemann, and M Morad
Department of Physiology, University of Pennsylvania, Philadelphia.

The potassium currents in rat and guinea pig ventricular myocytes and mouse astrocytes were studied using tedisamil, a novel antiarrhythmic agent. A 1 to 20 microM dosage of tedisamil caused marked prolongation of the action potential in isolated rat ventricular myocytes, mimicking its reported effects on multicellular rat heart preparations. Under voltage clamp conditions, tedisamil caused a dose-dependent increase in the speed of inactivation of the transient outward K+ current (Ito), the predominant outward current in rat ventricular myocytes. In cardiac myocytes, the tedisamil block was neither use- nor voltage-dependent. The slow reversibility of drug action when applied from the outside, and its effectiveness when applied intracellularly, suggested an internal site of drug action. In guinea pig ventricular myocytes, tedisamil blocked the slowly developing time-dependent delayed rectifier K+ current (IK) over the same concentration range as that found for Ito in the rat myocytes. Tedisamil reduced this current without changing the characteristics of its slow (tau approximately 1 sec) activation. The effects of tedisamil on Ito and IK were independent of the phosphorylation state of the channel, as assessed by the equal effectiveness of the drug in the presence or absence of isoproterenol. Tedisamil also blocked the transient K+ current and the delayed rectifier current (IK) in mouse astrocytes over the same concentration range as that found in the cardiac myocytes and by a process that accelerated (transient K+ current) or mimicked (IK) inactivation. At concentrations of up to 50 microM, tedisamil had little effect on the time-dependent inward rectifier K+ current, or inward calcium current in rat or guinea pig ventricular myocytes.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D001952 Bridged-Ring Compounds Cyclic hydrocarbons that contain multiple rings which share one or more bridgehead connections. Bridged Compounds,Bridged Ring Compounds
D002316 Cardiotonic Agents Agents that have a strengthening effect on the heart or that can increase cardiac output. They may be CARDIAC GLYCOSIDES; SYMPATHOMIMETICS; or other drugs. They are used after MYOCARDIAL INFARCT; CARDIAC SURGICAL PROCEDURES; in SHOCK; or in congestive heart failure (HEART FAILURE). Cardiac Stimulant,Cardiac Stimulants,Cardioprotective Agent,Cardioprotective Agents,Cardiotonic,Cardiotonic Agent,Cardiotonic Drug,Inotropic Agents, Positive Cardiac,Myocardial Stimulant,Myocardial Stimulants,Cardiotonic Drugs,Cardiotonics,Agent, Cardioprotective,Agent, Cardiotonic,Drug, Cardiotonic,Stimulant, Cardiac,Stimulant, Myocardial
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003521 Cyclopropanes Three-carbon cycloparaffin cyclopropane (the structural formula (CH2)3) and its derivatives.
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential

Related Publications

I D Dukes, and L Cleemann, and M Morad
January 2010, Journal of molecular and cellular cardiology,
I D Dukes, and L Cleemann, and M Morad
November 2003, British journal of pharmacology,
I D Dukes, and L Cleemann, and M Morad
July 1998, The American journal of physiology,
I D Dukes, and L Cleemann, and M Morad
February 2003, The Journal of pharmacology and experimental therapeutics,
I D Dukes, and L Cleemann, and M Morad
March 2000, Circulation,
I D Dukes, and L Cleemann, and M Morad
February 1992, Pflugers Archiv : European journal of physiology,
I D Dukes, and L Cleemann, and M Morad
July 1998, Molecular pharmacology,
I D Dukes, and L Cleemann, and M Morad
March 2001, Acta pharmacologica Sinica,
I D Dukes, and L Cleemann, and M Morad
May 1992, Pflugers Archiv : European journal of physiology,
I D Dukes, and L Cleemann, and M Morad
July 2003, Neurobiology of disease,
Copied contents to your clipboard!